![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashrabsn01 | Structured version Visualization version GIF version |
Description: The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
Ref | Expression |
---|---|
hashrabsn01 | ⊢ ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . 2 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} | |
2 | rabrsn 4291 | . 2 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) | |
3 | fveq2 6229 | . . . . 5 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → (#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = (#‘∅)) | |
4 | 3 | eqeq1d 2653 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (#‘∅) = 𝑁)) |
5 | eqcom 2658 | . . . . . . 7 ⊢ ((#‘∅) = 𝑁 ↔ 𝑁 = (#‘∅)) | |
6 | 5 | biimpi 206 | . . . . . 6 ⊢ ((#‘∅) = 𝑁 → 𝑁 = (#‘∅)) |
7 | hash0 13196 | . . . . . 6 ⊢ (#‘∅) = 0 | |
8 | 6, 7 | syl6eq 2701 | . . . . 5 ⊢ ((#‘∅) = 𝑁 → 𝑁 = 0) |
9 | 8 | orcd 406 | . . . 4 ⊢ ((#‘∅) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
10 | 4, 9 | syl6bi 243 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
11 | fveq2 6229 | . . . . 5 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → (#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = (#‘{𝐴})) | |
12 | 11 | eqeq1d 2653 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (#‘{𝐴}) = 𝑁)) |
13 | eqcom 2658 | . . . . . . . . 9 ⊢ ((#‘{𝐴}) = 𝑁 ↔ 𝑁 = (#‘{𝐴})) | |
14 | 13 | biimpi 206 | . . . . . . . 8 ⊢ ((#‘{𝐴}) = 𝑁 → 𝑁 = (#‘{𝐴})) |
15 | hashsng 13197 | . . . . . . . 8 ⊢ (𝐴 ∈ V → (#‘{𝐴}) = 1) | |
16 | 14, 15 | sylan9eqr 2707 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ (#‘{𝐴}) = 𝑁) → 𝑁 = 1) |
17 | 16 | olcd 407 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ (#‘{𝐴}) = 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1)) |
18 | 17 | ex 449 | . . . . 5 ⊢ (𝐴 ∈ V → ((#‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
19 | snprc 4285 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
20 | fveq2 6229 | . . . . . . . 8 ⊢ ({𝐴} = ∅ → (#‘{𝐴}) = (#‘∅)) | |
21 | 20 | eqeq1d 2653 | . . . . . . 7 ⊢ ({𝐴} = ∅ → ((#‘{𝐴}) = 𝑁 ↔ (#‘∅) = 𝑁)) |
22 | 21, 9 | syl6bi 243 | . . . . . 6 ⊢ ({𝐴} = ∅ → ((#‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
23 | 19, 22 | sylbi 207 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ((#‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
24 | 18, 23 | pm2.61i 176 | . . . 4 ⊢ ((#‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
25 | 12, 24 | syl6bi 243 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
26 | 10, 25 | jaoi 393 | . 2 ⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
27 | 1, 2, 26 | mp2b 10 | 1 ⊢ ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 Vcvv 3231 ∅c0 3948 {csn 4210 ‘cfv 5926 0cc0 9974 1c1 9975 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |