Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashrabsn1 Structured version   Visualization version   GIF version

Theorem hashrabsn1 13119
 Description: If the size of a restricted class abstraction restricted to a singleton is 1, the condition of the class abstraction must hold for the singleton. (Contributed by Alexander van der Vekens, 3-Sep-2018.)
Assertion
Ref Expression
hashrabsn1 ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem hashrabsn1
StepHypRef Expression
1 eqid 2621 . 2 {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑}
2 rabrsn 4236 . 2 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}))
3 fveq2 6158 . . . . 5 ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → (#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = (#‘∅))
43eqeq1d 2623 . . . 4 ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 ↔ (#‘∅) = 1))
5 hash0 13114 . . . . . 6 (#‘∅) = 0
65eqeq1i 2626 . . . . 5 ((#‘∅) = 1 ↔ 0 = 1)
7 0ne1 11048 . . . . . 6 0 ≠ 1
8 eqneqall 2801 . . . . . 6 (0 = 1 → (0 ≠ 1 → [𝐴 / 𝑥]𝜑))
97, 8mpi 20 . . . . 5 (0 = 1 → [𝐴 / 𝑥]𝜑)
106, 9sylbi 207 . . . 4 ((#‘∅) = 1 → [𝐴 / 𝑥]𝜑)
114, 10syl6bi 243 . . 3 ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))
12 snidg 4184 . . . . . . . . 9 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
1312adantr 481 . . . . . . . 8 ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → 𝐴 ∈ {𝐴})
14 eleq2 2687 . . . . . . . . 9 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝐴 ∈ {𝐴}))
1514adantl 482 . . . . . . . 8 ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝐴 ∈ {𝐴}))
1613, 15mpbird 247 . . . . . . 7 ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → 𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑})
17 nfcv 2761 . . . . . . . . 9 𝑥{𝐴}
1817elrabsf 3461 . . . . . . . 8 (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ (𝐴 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑))
1918simprbi 480 . . . . . . 7 (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} → [𝐴 / 𝑥]𝜑)
2016, 19syl 17 . . . . . 6 ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → [𝐴 / 𝑥]𝜑)
2120a1d 25 . . . . 5 ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))
2221ex 450 . . . 4 (𝐴 ∈ V → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)))
23 snprc 4230 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
24 eqeq2 2632 . . . . . 6 ({𝐴} = ∅ → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = ∅))
25 ax-1ne0 9965 . . . . . . . . . 10 1 ≠ 0
26 eqneqall 2801 . . . . . . . . . 10 (1 = 0 → (1 ≠ 0 → [𝐴 / 𝑥]𝜑))
2725, 26mpi 20 . . . . . . . . 9 (1 = 0 → [𝐴 / 𝑥]𝜑)
2827eqcoms 2629 . . . . . . . 8 (0 = 1 → [𝐴 / 𝑥]𝜑)
296, 28sylbi 207 . . . . . . 7 ((#‘∅) = 1 → [𝐴 / 𝑥]𝜑)
304, 29syl6bi 243 . . . . . 6 ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))
3124, 30syl6bi 243 . . . . 5 ({𝐴} = ∅ → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)))
3223, 31sylbi 207 . . . 4 𝐴 ∈ V → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)))
3322, 32pm2.61i 176 . . 3 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))
3411, 33jaoi 394 . 2 (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))
351, 2, 34mp2b 10 1 ((#‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  {crab 2912  Vcvv 3190  [wsbc 3422  ∅c0 3897  {csn 4155  ‘cfv 5857  0cc0 9896  1c1 9897  #chash 13073 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-hash 13074 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator