Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashunif Structured version   Visualization version   GIF version

Theorem hashunif 28745
Description: The cardinality of a disjoint finite union of finite sets. Cf. hashuni 14264. (Contributed by Thierry Arnoux, 17-Feb-2017.)
Hypotheses
Ref Expression
hashiunf.1 𝑥𝜑
hashiunf.3 (𝜑𝐴 ∈ Fin)
hashunif.4 (𝜑𝐴 ⊆ Fin)
hashunif.5 (𝜑Disj 𝑥𝐴 𝑥)
Assertion
Ref Expression
hashunif (𝜑 → (#‘ 𝐴) = Σ𝑥𝐴 (#‘𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem hashunif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uniiun 4407 . . 3 𝐴 = 𝑥𝐴 𝑥
21fveq2i 5989 . 2 (#‘ 𝐴) = (#‘ 𝑥𝐴 𝑥)
3 hashiunf.3 . . . 4 (𝜑𝐴 ∈ Fin)
4 hashunif.4 . . . . 5 (𝜑𝐴 ⊆ Fin)
54sselda 3472 . . . 4 ((𝜑𝑦𝐴) → 𝑦 ∈ Fin)
6 hashunif.5 . . . . 5 (𝜑Disj 𝑥𝐴 𝑥)
7 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
87cbvdisjv 4462 . . . . 5 (Disj 𝑥𝐴 𝑥Disj 𝑦𝐴 𝑦)
96, 8sylib 206 . . . 4 (𝜑Disj 𝑦𝐴 𝑦)
103, 5, 9hashiun 14262 . . 3 (𝜑 → (#‘ 𝑦𝐴 𝑦) = Σ𝑦𝐴 (#‘𝑦))
117cbviunv 4393 . . . . 5 𝑥𝐴 𝑥 = 𝑦𝐴 𝑦
1211a1i 11 . . . 4 (𝜑 𝑥𝐴 𝑥 = 𝑦𝐴 𝑦)
1312fveq2d 5990 . . 3 (𝜑 → (#‘ 𝑥𝐴 𝑥) = (#‘ 𝑦𝐴 𝑦))
14 fveq2 5986 . . . . 5 (𝑥 = 𝑦 → (#‘𝑥) = (#‘𝑦))
1514cbvsumv 14141 . . . 4 Σ𝑥𝐴 (#‘𝑥) = Σ𝑦𝐴 (#‘𝑦)
1615a1i 11 . . 3 (𝜑 → Σ𝑥𝐴 (#‘𝑥) = Σ𝑦𝐴 (#‘𝑦))
1710, 13, 163eqtr4d 2558 . 2 (𝜑 → (#‘ 𝑥𝐴 𝑥) = Σ𝑥𝐴 (#‘𝑥))
182, 17syl5eq 2560 1 (𝜑 → (#‘ 𝐴) = Σ𝑥𝐴 (#‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wnf 1698  wcel 1938  wss 3444   cuni 4270   ciun 4353  Disj wdisj 4451  cfv 5689  Fincfn 7716  #chash 12846  Σcsu 14131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722  ax-inf2 8296  ax-cnex 9746  ax-resscn 9747  ax-1cn 9748  ax-icn 9749  ax-addcl 9750  ax-addrcl 9751  ax-mulcl 9752  ax-mulrcl 9753  ax-mulcom 9754  ax-addass 9755  ax-mulass 9756  ax-distr 9757  ax-i2m1 9758  ax-1ne0 9759  ax-1rid 9760  ax-rnegex 9761  ax-rrecex 9762  ax-cnre 9763  ax-pre-lttri 9764  ax-pre-lttrn 9765  ax-pre-ltadd 9766  ax-pre-mulgt0 9767  ax-pre-sup 9768
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-disj 4452  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6833  df-1st 6933  df-2nd 6934  df-wrecs 7168  df-recs 7230  df-rdg 7268  df-1o 7322  df-oadd 7326  df-er 7504  df-en 7717  df-dom 7718  df-sdom 7719  df-fin 7720  df-sup 8106  df-oi 8173  df-card 8523  df-pnf 9830  df-mnf 9831  df-xr 9832  df-ltxr 9833  df-le 9834  df-sub 10018  df-neg 10019  df-div 10433  df-nn 10775  df-2 10833  df-3 10834  df-n0 11047  df-z 11118  df-uz 11427  df-rp 11574  df-fz 12065  df-fzo 12202  df-seq 12531  df-exp 12590  df-hash 12847  df-cj 13544  df-re 13545  df-im 13546  df-sqrt 13680  df-abs 13681  df-clim 13931  df-sum 14132
This theorem is referenced by:  hasheuni  29271
  Copyright terms: Public domain W3C validator