![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hatomistici | Structured version Visualization version GIF version |
Description: Cℋ is atomistic, i.e. any element is the supremum of its atoms. Remark in [Kalmbach] p. 140. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hatomistic.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
hatomistici | ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3828 | . . . . 5 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ HAtoms | |
2 | atssch 29511 | . . . . 5 ⊢ HAtoms ⊆ Cℋ | |
3 | 1, 2 | sstri 3753 | . . . 4 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ |
4 | chsupcl 28508 | . . . 4 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Cℋ ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∈ Cℋ |
6 | hatomistic.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
7 | 6 | chshii 28393 | . . 3 ⊢ 𝐴 ∈ Sℋ |
8 | atelch 29512 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → 𝑦 ∈ Cℋ ) | |
9 | 8 | anim1i 593 | . . . . . . 7 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → (𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴)) |
10 | sseq1 3767 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
11 | 10 | elrab 3504 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴)) |
12 | 10 | elrab 3504 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴)) |
13 | 9, 11, 12 | 3imtr4i 281 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → 𝑦 ∈ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) |
14 | 13 | ssriv 3748 | . . . . 5 ⊢ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} |
15 | ssrab2 3828 | . . . . . 6 ⊢ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ | |
16 | chsupss 28510 | . . . . . 6 ⊢ (({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ ∧ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ ) → ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}))) | |
17 | 3, 15, 16 | mp2an 710 | . . . . 5 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ {𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴} → ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴})) |
18 | 14, 17 | ax-mp 5 | . . . 4 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) |
19 | chsupid 28580 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴) | |
20 | 6, 19 | ax-mp 5 | . . . 4 ⊢ ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴 |
21 | 18, 20 | sseqtri 3778 | . . 3 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ⊆ 𝐴 |
22 | elssuni 4619 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} → 𝑦 ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | |
23 | 11, 22 | sylbir 225 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
24 | chsupunss 28512 | . . . . . . . . . . 11 ⊢ ({𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ Cℋ → ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) | |
25 | 3, 24 | ax-mp 5 | . . . . . . . . . 10 ⊢ ∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴} ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
26 | 23, 25 | syl6ss 3756 | . . . . . . . . 9 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) |
27 | 26 | ex 449 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 𝐴 → 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
28 | atne0 29513 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ HAtoms → 𝑦 ≠ 0ℋ) | |
29 | 28 | adantr 472 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → 𝑦 ≠ 0ℋ) |
30 | ssin 3978 | . . . . . . . . . . . . . . 15 ⊢ ((𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
31 | 5 | chocini 28622 | . . . . . . . . . . . . . . . 16 ⊢ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ |
32 | 31 | sseq2i 3771 | . . . . . . . . . . . . . . 15 ⊢ (𝑦 ⊆ (( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ 0ℋ) |
33 | 30, 32 | bitr2i 265 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ⊆ 0ℋ ↔ (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
34 | chle0 28611 | . . . . . . . . . . . . . . 15 ⊢ (𝑦 ∈ Cℋ → (𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ)) | |
35 | 8, 34 | syl 17 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ)) |
36 | 33, 35 | syl5bbr 274 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ HAtoms → ((𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 = 0ℋ)) |
37 | 36 | biimpa 502 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ HAtoms ∧ (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) → 𝑦 = 0ℋ) |
38 | 37 | expr 644 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → (𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → 𝑦 = 0ℋ)) |
39 | 38 | necon3ad 2945 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → (𝑦 ≠ 0ℋ → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
40 | 29, 39 | mpd 15 | . . . . . . . . 9 ⊢ ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
41 | 40 | ex 449 | . . . . . . . 8 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
42 | 27, 41 | syld 47 | . . . . . . 7 ⊢ (𝑦 ∈ HAtoms → (𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
43 | imnan 437 | . . . . . . 7 ⊢ ((𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ ¬ (𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
44 | 42, 43 | sylib 208 | . . . . . 6 ⊢ (𝑦 ∈ HAtoms → ¬ (𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
45 | ssin 3978 | . . . . . 6 ⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ↔ 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) | |
46 | 44, 45 | sylnib 317 | . . . . 5 ⊢ (𝑦 ∈ HAtoms → ¬ 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
47 | 46 | nrex 3138 | . . . 4 ⊢ ¬ ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) |
48 | 5 | choccli 28475 | . . . . . . 7 ⊢ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})) ∈ Cℋ |
49 | 6, 48 | chincli 28628 | . . . . . 6 ⊢ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ∈ Cℋ |
50 | 49 | hatomici 29527 | . . . . 5 ⊢ ((𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) ≠ 0ℋ → ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴})))) |
51 | 50 | necon1bi 2960 | . . . 4 ⊢ (¬ ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) → (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ) |
52 | 47, 51 | ax-mp 5 | . . 3 ⊢ (𝐴 ∩ (⊥‘( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}))) = 0ℋ |
53 | 5, 7, 21, 52 | omlsii 28571 | . 2 ⊢ ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) = 𝐴 |
54 | 53 | eqcomi 2769 | 1 ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 {crab 3054 ∩ cin 3714 ⊆ wss 3715 ∪ cuni 4588 ‘cfv 6049 Cℋ cch 28095 ⊥cort 28096 ∨ℋ chsup 28100 0ℋc0h 28101 HAtomscat 28131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cc 9449 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 ax-hilex 28165 ax-hfvadd 28166 ax-hvcom 28167 ax-hvass 28168 ax-hv0cl 28169 ax-hvaddid 28170 ax-hfvmul 28171 ax-hvmulid 28172 ax-hvmulass 28173 ax-hvdistr1 28174 ax-hvdistr2 28175 ax-hvmul0 28176 ax-hfi 28245 ax-his1 28248 ax-his2 28249 ax-his3 28250 ax-his4 28251 ax-hcompl 28368 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-omul 7734 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-fi 8482 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-acn 8958 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-ioo 12372 df-ico 12374 df-icc 12375 df-fz 12520 df-fzo 12660 df-fl 12787 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 df-rlim 14419 df-sum 14616 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-hom 16168 df-cco 16169 df-rest 16285 df-topn 16286 df-0g 16304 df-gsum 16305 df-topgen 16306 df-pt 16307 df-prds 16310 df-xrs 16364 df-qtop 16369 df-imas 16370 df-xps 16372 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-mulg 17742 df-cntz 17950 df-cmn 18395 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-fbas 19945 df-fg 19946 df-cnfld 19949 df-top 20901 df-topon 20918 df-topsp 20939 df-bases 20952 df-cld 21025 df-ntr 21026 df-cls 21027 df-nei 21104 df-cn 21233 df-cnp 21234 df-lm 21235 df-haus 21321 df-tx 21567 df-hmeo 21760 df-fil 21851 df-fm 21943 df-flim 21944 df-flf 21945 df-xms 22326 df-ms 22327 df-tms 22328 df-cfil 23253 df-cau 23254 df-cmet 23255 df-grpo 27656 df-gid 27657 df-ginv 27658 df-gdiv 27659 df-ablo 27708 df-vc 27723 df-nv 27756 df-va 27759 df-ba 27760 df-sm 27761 df-0v 27762 df-vs 27763 df-nmcv 27764 df-ims 27765 df-dip 27865 df-ssp 27886 df-ph 27977 df-cbn 28028 df-hnorm 28134 df-hba 28135 df-hvsub 28137 df-hlim 28138 df-hcau 28139 df-sh 28373 df-ch 28387 df-oc 28418 df-ch0 28419 df-span 28477 df-chsup 28479 df-cv 29447 df-at 29506 |
This theorem is referenced by: chpssati 29531 |
Copyright terms: Public domain | W3C validator |