MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauscmplem Structured version   Visualization version   GIF version

Theorem hauscmplem 22016
Description: Lemma for hauscmp 22017. (Contributed by Mario Carneiro, 27-Nov-2013.)
Hypotheses
Ref Expression
hauscmp.1 𝑋 = 𝐽
hauscmplem.2 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
hauscmplem.3 (𝜑𝐽 ∈ Haus)
hauscmplem.4 (𝜑𝑆𝑋)
hauscmplem.5 (𝜑 → (𝐽t 𝑆) ∈ Comp)
hauscmplem.6 (𝜑𝐴 ∈ (𝑋𝑆))
Assertion
Ref Expression
hauscmplem (𝜑 → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐽,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝑤,𝑆,𝑦,𝑧   𝑧,𝑂   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑦,𝑤)

Proof of Theorem hauscmplem
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauscmplem.3 . . . . . . 7 (𝜑𝐽 ∈ Haus)
2 haustop 21941 . . . . . . 7 (𝐽 ∈ Haus → 𝐽 ∈ Top)
31, 2syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
43ad3antrrr 728 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝐽 ∈ Top)
5 hauscmp.1 . . . . . 6 𝑋 = 𝐽
65topopn 21516 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
74, 6syl 17 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑋𝐽)
8 hauscmplem.6 . . . . . 6 (𝜑𝐴 ∈ (𝑋𝑆))
98eldifad 3950 . . . . 5 (𝜑𝐴𝑋)
109ad3antrrr 728 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝐴𝑋)
115clstop 21679 . . . . . . 7 (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋)
124, 11syl 17 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = 𝑋)
13 simplr 767 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 𝑥)
14 unieq 4851 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
15 uni0 4868 . . . . . . . . . . . 12 ∅ = ∅
1614, 15syl6eq 2874 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
1716adantl 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑥 = ∅)
1813, 17sseqtrd 4009 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 ⊆ ∅)
19 ss0 4354 . . . . . . . . 9 (𝑆 ⊆ ∅ → 𝑆 = ∅)
2018, 19syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 = ∅)
2120difeq2d 4101 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → (𝑋𝑆) = (𝑋 ∖ ∅))
22 dif0 4334 . . . . . . 7 (𝑋 ∖ ∅) = 𝑋
2321, 22syl6eq 2874 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → (𝑋𝑆) = 𝑋)
2412, 23eqtr4d 2861 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = (𝑋𝑆))
25 eqimss 4025 . . . . 5 (((cls‘𝐽)‘𝑋) = (𝑋𝑆) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))
2624, 25syl 17 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))
27 eleq2 2903 . . . . . 6 (𝑧 = 𝑋 → (𝐴𝑧𝐴𝑋))
28 fveq2 6672 . . . . . . 7 (𝑧 = 𝑋 → ((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘𝑋))
2928sseq1d 4000 . . . . . 6 (𝑧 = 𝑋 → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) ↔ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆)))
3027, 29anbi12d 632 . . . . 5 (𝑧 = 𝑋 → ((𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) ↔ (𝐴𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))))
3130rspcev 3625 . . . 4 ((𝑋𝐽 ∧ (𝐴𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
327, 10, 26, 31syl12anc 834 . . 3 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
33 elin 4171 . . . . . . 7 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑂𝑥 ∈ Fin))
34 id 22 . . . . . . . 8 (𝑥 ∈ Fin → 𝑥 ∈ Fin)
35 elpwi 4550 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑂𝑥𝑂)
3635sseld 3968 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑂 → (𝑧𝑥𝑧𝑂))
37 difeq2 4095 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑋𝑦) = (𝑋𝑧))
3837sseq2d 4001 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦) ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
3938anbi2d 630 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)) ↔ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4039rexbidv 3299 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)) ↔ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
41 hauscmplem.2 . . . . . . . . . . . 12 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
4240, 41elrab2 3685 . . . . . . . . . . 11 (𝑧𝑂 ↔ (𝑧𝐽 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4342simprbi 499 . . . . . . . . . 10 (𝑧𝑂 → ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
4436, 43syl6 35 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝑂 → (𝑧𝑥 → ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4544ralrimiv 3183 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑂 → ∀𝑧𝑥𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
46 eleq2 2903 . . . . . . . . . 10 (𝑤 = (𝑓𝑧) → (𝐴𝑤𝐴 ∈ (𝑓𝑧)))
47 fveq2 6672 . . . . . . . . . . 11 (𝑤 = (𝑓𝑧) → ((cls‘𝐽)‘𝑤) = ((cls‘𝐽)‘(𝑓𝑧)))
4847sseq1d 4000 . . . . . . . . . 10 (𝑤 = (𝑓𝑧) → (((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧) ↔ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))
4946, 48anbi12d 632 . . . . . . . . 9 (𝑤 = (𝑓𝑧) → ((𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)) ↔ (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5049ac6sfi 8764 . . . . . . . 8 ((𝑥 ∈ Fin ∧ ∀𝑧𝑥𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5134, 45, 50syl2anr 598 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑂𝑥 ∈ Fin) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5233, 51sylbi 219 . . . . . 6 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5352ad2antlr 725 . . . . 5 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
543ad3antrrr 728 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐽 ∈ Top)
55 frn 6522 . . . . . . . 8 (𝑓:𝑥𝐽 → ran 𝑓𝐽)
5655ad2antrl 726 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓𝐽)
57 simprr 771 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
58 simpl 485 . . . . . . . 8 ((𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))) → 𝑓:𝑥𝐽)
59 dm0rn0 5797 . . . . . . . . . . 11 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
60 fdm 6524 . . . . . . . . . . . 12 (𝑓:𝑥𝐽 → dom 𝑓 = 𝑥)
6160eqeq1d 2825 . . . . . . . . . . 11 (𝑓:𝑥𝐽 → (dom 𝑓 = ∅ ↔ 𝑥 = ∅))
6259, 61syl5rbbr 288 . . . . . . . . . 10 (𝑓:𝑥𝐽 → (𝑥 = ∅ ↔ ran 𝑓 = ∅))
6362necon3bid 3062 . . . . . . . . 9 (𝑓:𝑥𝐽 → (𝑥 ≠ ∅ ↔ ran 𝑓 ≠ ∅))
6463biimpac 481 . . . . . . . 8 ((𝑥 ≠ ∅ ∧ 𝑓:𝑥𝐽) → ran 𝑓 ≠ ∅)
6557, 58, 64syl2an 597 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 ≠ ∅)
6633simprbi 499 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → 𝑥 ∈ Fin)
6766ad2antlr 725 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → 𝑥 ∈ Fin)
68 ffn 6516 . . . . . . . . . 10 (𝑓:𝑥𝐽𝑓 Fn 𝑥)
69 dffn4 6598 . . . . . . . . . 10 (𝑓 Fn 𝑥𝑓:𝑥onto→ran 𝑓)
7068, 69sylib 220 . . . . . . . . 9 (𝑓:𝑥𝐽𝑓:𝑥onto→ran 𝑓)
7170adantr 483 . . . . . . . 8 ((𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))) → 𝑓:𝑥onto→ran 𝑓)
72 fofi 8812 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝑓:𝑥onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7367, 71, 72syl2an 597 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 ∈ Fin)
74 fiinopn 21511 . . . . . . . 8 (𝐽 ∈ Top → ((ran 𝑓𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin) → ran 𝑓𝐽))
7574imp 409 . . . . . . 7 ((𝐽 ∈ Top ∧ (ran 𝑓𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin)) → ran 𝑓𝐽)
7654, 56, 65, 73, 75syl13anc 1368 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓𝐽)
77 simpl 485 . . . . . . . . . 10 ((𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → 𝐴 ∈ (𝑓𝑧))
7877ralimi 3162 . . . . . . . . 9 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧))
7978ad2antll 727 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧))
808ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 ∈ (𝑋𝑆))
81 eliin 4926 . . . . . . . . 9 (𝐴 ∈ (𝑋𝑆) → (𝐴 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧)))
8280, 81syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → (𝐴 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧)))
8379, 82mpbird 259 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 𝑧𝑥 (𝑓𝑧))
8468ad2antrl 726 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑓 Fn 𝑥)
85 fnrnfv 6727 . . . . . . . . . 10 (𝑓 Fn 𝑥 → ran 𝑓 = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)})
8685inteqd 4883 . . . . . . . . 9 (𝑓 Fn 𝑥 ran 𝑓 = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)})
87 fvex 6685 . . . . . . . . . 10 (𝑓𝑧) ∈ V
8887dfiin2 4961 . . . . . . . . 9 𝑧𝑥 (𝑓𝑧) = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)}
8986, 88syl6eqr 2876 . . . . . . . 8 (𝑓 Fn 𝑥 ran 𝑓 = 𝑧𝑥 (𝑓𝑧))
9084, 89syl 17 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 = 𝑧𝑥 (𝑓𝑧))
9183, 90eleqtrrd 2918 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 ran 𝑓)
9257adantr 483 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑥 ≠ ∅)
933ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → 𝐽 ∈ Top)
94 ffvelrn 6851 . . . . . . . . . . . . . . 15 ((𝑓:𝑥𝐽𝑧𝑥) → (𝑓𝑧) ∈ 𝐽)
9594adantll 712 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ∈ 𝐽)
96 elssuni 4870 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ 𝐽 → (𝑓𝑧) ⊆ 𝐽)
9795, 96syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ 𝐽)
9897, 5sseqtrrdi 4020 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ 𝑋)
995clscld 21657 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑓𝑧) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
10093, 98, 99syl2anc 586 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
101100ralrimiva 3184 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
102101adantrr 715 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
103 iincld 21649 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽)) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
10492, 102, 103syl2anc 586 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
1055sscls 21666 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝑓𝑧) ⊆ 𝑋) → (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
10693, 98, 105syl2anc 586 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
107106ralrimiva 3184 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → ∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
108 ssel 3963 . . . . . . . . . . . . . 14 ((𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (𝑦 ∈ (𝑓𝑧) → 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
109108ral2imi 3158 . . . . . . . . . . . . 13 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (∀𝑧𝑥 𝑦 ∈ (𝑓𝑧) → ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
110 eliin 4926 . . . . . . . . . . . . . 14 (𝑦 ∈ V → (𝑦 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑓𝑧)))
111110elv 3501 . . . . . . . . . . . . 13 (𝑦 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑓𝑧))
112 eliin 4926 . . . . . . . . . . . . . 14 (𝑦 ∈ V → (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ↔ ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
113112elv 3501 . . . . . . . . . . . . 13 (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ↔ ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)))
114109, 111, 1133imtr4g 298 . . . . . . . . . . . 12 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (𝑦 𝑧𝑥 (𝑓𝑧) → 𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧))))
115114ssrdv 3975 . . . . . . . . . . 11 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
116107, 115syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
117116adantrr 715 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
11890, 117eqsstrd 4007 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
1195clsss2 21682 . . . . . . . 8 (( 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽) ∧ ran 𝑓 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
120104, 118, 119syl2anc 586 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
121 ssel 3963 . . . . . . . . . . . . 13 (((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 ∈ (𝑋𝑧)))
122121adantl 484 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 ∈ (𝑋𝑧)))
123122ral2imi 3158 . . . . . . . . . . 11 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧)))
124 eliin 4926 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑦 𝑧𝑥 (𝑋𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧)))
125124elv 3501 . . . . . . . . . . 11 (𝑦 𝑧𝑥 (𝑋𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧))
126123, 113, 1253imtr4g 298 . . . . . . . . . 10 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 𝑧𝑥 (𝑋𝑧)))
127126ssrdv 3975 . . . . . . . . 9 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ 𝑧𝑥 (𝑋𝑧))
128127ad2antll 727 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ 𝑧𝑥 (𝑋𝑧))
129 iindif2 5001 . . . . . . . . . 10 (𝑥 ≠ ∅ → 𝑧𝑥 (𝑋𝑧) = (𝑋 𝑧𝑥 𝑧))
13092, 129syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑋𝑧) = (𝑋 𝑧𝑥 𝑧))
131 simplrl 775 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑆 𝑥)
132 uniiun 4984 . . . . . . . . . . . 12 𝑥 = 𝑧𝑥 𝑧
133132sseq2i 3998 . . . . . . . . . . 11 (𝑆 𝑥𝑆 𝑧𝑥 𝑧)
134 sscon 4117 . . . . . . . . . . 11 (𝑆 𝑧𝑥 𝑧 → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
135133, 134sylbi 219 . . . . . . . . . 10 (𝑆 𝑥 → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
136131, 135syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
137130, 136eqsstrd 4007 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑋𝑧) ⊆ (𝑋𝑆))
138128, 137sstrd 3979 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑆))
139120, 138sstrd 3979 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))
140 eleq2 2903 . . . . . . . 8 (𝑧 = ran 𝑓 → (𝐴𝑧𝐴 ran 𝑓))
141 fveq2 6672 . . . . . . . . 9 (𝑧 = ran 𝑓 → ((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘ ran 𝑓))
142141sseq1d 4000 . . . . . . . 8 (𝑧 = ran 𝑓 → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) ↔ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆)))
143140, 142anbi12d 632 . . . . . . 7 (𝑧 = ran 𝑓 → ((𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) ↔ (𝐴 ran 𝑓 ∧ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))))
144143rspcev 3625 . . . . . 6 (( ran 𝑓𝐽 ∧ (𝐴 ran 𝑓 ∧ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14576, 91, 139, 144syl12anc 834 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14653, 145exlimddv 1936 . . . 4 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
147146anassrs 470 . . 3 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 ≠ ∅) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14832, 147pm2.61dane 3106 . 2 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
1491adantr 483 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐽 ∈ Haus)
150 hauscmplem.4 . . . . . . . . 9 (𝜑𝑆𝑋)
151150sselda 3969 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝑋)
1529adantr 483 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴𝑋)
153 id 22 . . . . . . . . 9 (𝑥𝑆𝑥𝑆)
1548eldifbd 3951 . . . . . . . . 9 (𝜑 → ¬ 𝐴𝑆)
155 nelne2 3117 . . . . . . . . 9 ((𝑥𝑆 ∧ ¬ 𝐴𝑆) → 𝑥𝐴)
156153, 154, 155syl2anr 598 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝐴)
1575hausnei 21938 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥𝑋𝐴𝑋𝑥𝐴)) → ∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅))
158149, 151, 152, 156, 157syl13anc 1368 . . . . . . 7 ((𝜑𝑥𝑆) → ∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅))
159 3anass 1091 . . . . . . . . . . 11 ((𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) ↔ (𝑥𝑦 ∧ (𝐴𝑤 ∧ (𝑦𝑤) = ∅)))
160 elssuni 4870 . . . . . . . . . . . . . . . . 17 (𝑤𝐽𝑤 𝐽)
161160, 5sseqtrrdi 4020 . . . . . . . . . . . . . . . 16 (𝑤𝐽𝑤𝑋)
162161adantl 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → 𝑤𝑋)
163 incom 4180 . . . . . . . . . . . . . . . . 17 (𝑦𝑤) = (𝑤𝑦)
164163eqeq1i 2828 . . . . . . . . . . . . . . . 16 ((𝑦𝑤) = ∅ ↔ (𝑤𝑦) = ∅)
165 reldisj 4404 . . . . . . . . . . . . . . . 16 (𝑤𝑋 → ((𝑤𝑦) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
166164, 165syl5bb 285 . . . . . . . . . . . . . . 15 (𝑤𝑋 → ((𝑦𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
167162, 166syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑦𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
168149, 2syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝐽 ∈ Top)
1695opncld 21643 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑦𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
170168, 169sylan 582 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
171170adantr 483 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
1725clsss2 21682 . . . . . . . . . . . . . . . 16 (((𝑋𝑦) ∈ (Clsd‘𝐽) ∧ 𝑤 ⊆ (𝑋𝑦)) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))
173172ex 415 . . . . . . . . . . . . . . 15 ((𝑋𝑦) ∈ (Clsd‘𝐽) → (𝑤 ⊆ (𝑋𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
174171, 173syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → (𝑤 ⊆ (𝑋𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
175167, 174sylbid 242 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑦𝑤) = ∅ → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
176175anim2d 613 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
177176anim2d 613 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑥𝑦 ∧ (𝐴𝑤 ∧ (𝑦𝑤) = ∅)) → (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
178159, 177syl5bi 244 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
179178reximdva 3276 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (∃𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → ∃𝑤𝐽 (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
180 r19.42v 3352 . . . . . . . . 9 (∃𝑤𝐽 (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))) ↔ (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
181179, 180syl6ib 253 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (∃𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
182181reximdva 3276 . . . . . . 7 ((𝜑𝑥𝑆) → (∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
183158, 182mpd 15 . . . . . 6 ((𝜑𝑥𝑆) → ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
18441unieqi 4853 . . . . . . . 8 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
185184eleq2i 2906 . . . . . . 7 (𝑥 𝑂𝑥 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))})
186 elunirab 4856 . . . . . . 7 (𝑥 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))} ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
187185, 186bitri 277 . . . . . 6 (𝑥 𝑂 ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
188183, 187sylibr 236 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 𝑂)
189188ex 415 . . . 4 (𝜑 → (𝑥𝑆𝑥 𝑂))
190189ssrdv 3975 . . 3 (𝜑𝑆 𝑂)
191 unieq 4851 . . . . . 6 (𝑧 = 𝑂 𝑧 = 𝑂)
192191sseq2d 4001 . . . . 5 (𝑧 = 𝑂 → (𝑆 𝑧𝑆 𝑂))
193 pweq 4557 . . . . . . 7 (𝑧 = 𝑂 → 𝒫 𝑧 = 𝒫 𝑂)
194193ineq1d 4190 . . . . . 6 (𝑧 = 𝑂 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑂 ∩ Fin))
195194rexeqdv 3418 . . . . 5 (𝑧 = 𝑂 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥))
196192, 195imbi12d 347 . . . 4 (𝑧 = 𝑂 → ((𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥) ↔ (𝑆 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥)))
197 hauscmplem.5 . . . . 5 (𝜑 → (𝐽t 𝑆) ∈ Comp)
1985cmpsub 22010 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥)))
199198biimp3a 1465 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥))
2003, 150, 197, 199syl3anc 1367 . . . 4 (𝜑 → ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥))
20141ssrab3 4059 . . . . 5 𝑂𝐽
202 elpw2g 5249 . . . . . 6 (𝐽 ∈ Haus → (𝑂 ∈ 𝒫 𝐽𝑂𝐽))
2031, 202syl 17 . . . . 5 (𝜑 → (𝑂 ∈ 𝒫 𝐽𝑂𝐽))
204201, 203mpbiri 260 . . . 4 (𝜑𝑂 ∈ 𝒫 𝐽)
205196, 200, 204rspcdva 3627 . . 3 (𝜑 → (𝑆 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥))
206190, 205mpd 15 . 2 (𝜑 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥)
207148, 206r19.29a 3291 1 (𝜑 → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541   cuni 4840   cint 4878   ciun 4921   ciin 4922  dom cdm 5557  ran crn 5558   Fn wfn 6352  wf 6353  ontowfo 6355  cfv 6357  (class class class)co 7158  Fincfn 8511  t crest 16696  Topctop 21503  Clsdccld 21626  clsccl 21628  Hauscha 21918  Compccmp 21996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-fin 8515  df-fi 8877  df-rest 16698  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629  df-cls 21631  df-haus 21925  df-cmp 21997
This theorem is referenced by:  hauscmp  22017  hausllycmp  22104
  Copyright terms: Public domain W3C validator