MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausdiag Structured version   Visualization version   GIF version

Theorem hausdiag 21358
Description: A topology is Hausdorff iff the diagonal set is closed in the topology's product with itself. EDITORIAL: very clumsy proof, can probably be shortened substantially. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
hausdiag.x 𝑋 = 𝐽
Assertion
Ref Expression
hausdiag (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽))))

Proof of Theorem hausdiag
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hausdiag.x . . 3 𝑋 = 𝐽
21ishaus 21036 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑎𝑋𝑏𝑋 (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅))))
3 txtop 21282 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
43anidms 676 . . . . 5 (𝐽 ∈ Top → (𝐽 ×t 𝐽) ∈ Top)
5 f1oi 6131 . . . . . . 7 ( I ↾ 𝑋):𝑋1-1-onto𝑋
6 f1of 6094 . . . . . . 7 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
7 fssxp 6017 . . . . . . 7 (( I ↾ 𝑋):𝑋𝑋 → ( I ↾ 𝑋) ⊆ (𝑋 × 𝑋))
85, 6, 7mp2b 10 . . . . . 6 ( I ↾ 𝑋) ⊆ (𝑋 × 𝑋)
91, 1txuni 21305 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
109anidms 676 . . . . . 6 (𝐽 ∈ Top → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
118, 10syl5sseq 3632 . . . . 5 (𝐽 ∈ Top → ( I ↾ 𝑋) ⊆ (𝐽 ×t 𝐽))
12 eqid 2621 . . . . . 6 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
1312iscld2 20742 . . . . 5 (((𝐽 ×t 𝐽) ∈ Top ∧ ( I ↾ 𝑋) ⊆ (𝐽 ×t 𝐽)) → (( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ∈ (𝐽 ×t 𝐽)))
144, 11, 13syl2anc 692 . . . 4 (𝐽 ∈ Top → (( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ∈ (𝐽 ×t 𝐽)))
15 eltx 21281 . . . . 5 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ∈ (𝐽 ×t 𝐽) ↔ ∀𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))
1615anidms 676 . . . 4 (𝐽 ∈ Top → (( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ∈ (𝐽 ×t 𝐽) ↔ ∀𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))
17 eldif 3565 . . . . . . . . . 10 (𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ↔ (𝑒 (𝐽 ×t 𝐽) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋)))
1810eqcomd 2627 . . . . . . . . . . . 12 (𝐽 ∈ Top → (𝐽 ×t 𝐽) = (𝑋 × 𝑋))
1918eleq2d 2684 . . . . . . . . . . 11 (𝐽 ∈ Top → (𝑒 (𝐽 ×t 𝐽) ↔ 𝑒 ∈ (𝑋 × 𝑋)))
2019anbi1d 740 . . . . . . . . . 10 (𝐽 ∈ Top → ((𝑒 (𝐽 ×t 𝐽) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋)) ↔ (𝑒 ∈ (𝑋 × 𝑋) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋))))
2117, 20syl5bb 272 . . . . . . . . 9 (𝐽 ∈ Top → (𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ↔ (𝑒 ∈ (𝑋 × 𝑋) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋))))
2221imbi1d 331 . . . . . . . 8 (𝐽 ∈ Top → ((𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ ((𝑒 ∈ (𝑋 × 𝑋) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋)) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))))
23 impexp 462 . . . . . . . 8 (((𝑒 ∈ (𝑋 × 𝑋) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋)) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ (𝑒 ∈ (𝑋 × 𝑋) → (¬ 𝑒 ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))))
2422, 23syl6bb 276 . . . . . . 7 (𝐽 ∈ Top → ((𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ (𝑒 ∈ (𝑋 × 𝑋) → (¬ 𝑒 ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))))
2524ralbidv2 2978 . . . . . 6 (𝐽 ∈ Top → (∀𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ∀𝑒 ∈ (𝑋 × 𝑋)(¬ 𝑒 ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))))
26 eleq1 2686 . . . . . . . . 9 (𝑒 = ⟨𝑎, 𝑏⟩ → (𝑒 ∈ ( I ↾ 𝑋) ↔ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋)))
2726notbid 308 . . . . . . . 8 (𝑒 = ⟨𝑎, 𝑏⟩ → (¬ 𝑒 ∈ ( I ↾ 𝑋) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋)))
28 eleq1 2686 . . . . . . . . . 10 (𝑒 = ⟨𝑎, 𝑏⟩ → (𝑒 ∈ (𝑐 × 𝑑) ↔ ⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑)))
2928anbi1d 740 . . . . . . . . 9 (𝑒 = ⟨𝑎, 𝑏⟩ → ((𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))
30292rexbidv 3050 . . . . . . . 8 (𝑒 = ⟨𝑎, 𝑏⟩ → (∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))
3127, 30imbi12d 334 . . . . . . 7 (𝑒 = ⟨𝑎, 𝑏⟩ → ((¬ 𝑒 ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ (¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))))
3231ralxp 5223 . . . . . 6 (∀𝑒 ∈ (𝑋 × 𝑋)(¬ 𝑒 ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ ∀𝑎𝑋𝑏𝑋 (¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))
3325, 32syl6bb 276 . . . . 5 (𝐽 ∈ Top → (∀𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ∀𝑎𝑋𝑏𝑋 (¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))))
34 vex 3189 . . . . . . . . . . 11 𝑏 ∈ V
3534opelres 5361 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) ↔ (⟨𝑎, 𝑏⟩ ∈ I ∧ 𝑎𝑋))
36 df-br 4614 . . . . . . . . . . . 12 (𝑎 I 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ I )
3734ideq 5234 . . . . . . . . . . . 12 (𝑎 I 𝑏𝑎 = 𝑏)
3836, 37bitr3i 266 . . . . . . . . . . 11 (⟨𝑎, 𝑏⟩ ∈ I ↔ 𝑎 = 𝑏)
39 iba 524 . . . . . . . . . . . 12 (𝑎𝑋 → (⟨𝑎, 𝑏⟩ ∈ I ↔ (⟨𝑎, 𝑏⟩ ∈ I ∧ 𝑎𝑋)))
4039adantr 481 . . . . . . . . . . 11 ((𝑎𝑋𝑏𝑋) → (⟨𝑎, 𝑏⟩ ∈ I ↔ (⟨𝑎, 𝑏⟩ ∈ I ∧ 𝑎𝑋)))
4138, 40syl5rbbr 275 . . . . . . . . . 10 ((𝑎𝑋𝑏𝑋) → ((⟨𝑎, 𝑏⟩ ∈ I ∧ 𝑎𝑋) ↔ 𝑎 = 𝑏))
4235, 41syl5bb 272 . . . . . . . . 9 ((𝑎𝑋𝑏𝑋) → (⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) ↔ 𝑎 = 𝑏))
4342adantl 482 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) → (⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) ↔ 𝑎 = 𝑏))
4443necon3bbid 2827 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) → (¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) ↔ 𝑎𝑏))
45 elssuni 4433 . . . . . . . . . . . . . . . 16 (𝑐𝐽𝑐 𝐽)
46 elssuni 4433 . . . . . . . . . . . . . . . 16 (𝑑𝐽𝑑 𝐽)
47 xpss12 5186 . . . . . . . . . . . . . . . 16 ((𝑐 𝐽𝑑 𝐽) → (𝑐 × 𝑑) ⊆ ( 𝐽 × 𝐽))
4845, 46, 47syl2an 494 . . . . . . . . . . . . . . 15 ((𝑐𝐽𝑑𝐽) → (𝑐 × 𝑑) ⊆ ( 𝐽 × 𝐽))
491, 1xpeq12i 5097 . . . . . . . . . . . . . . 15 (𝑋 × 𝑋) = ( 𝐽 × 𝐽)
5048, 49syl6sseqr 3631 . . . . . . . . . . . . . 14 ((𝑐𝐽𝑑𝐽) → (𝑐 × 𝑑) ⊆ (𝑋 × 𝑋))
5150adantl 482 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (𝑐 × 𝑑) ⊆ (𝑋 × 𝑋))
5210ad2antrr 761 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
5351, 52sseqtrd 3620 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (𝑐 × 𝑑) ⊆ (𝐽 ×t 𝐽))
54 reldisj 3992 . . . . . . . . . . . 12 ((𝑐 × 𝑑) ⊆ (𝐽 ×t 𝐽) → (((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ∅ ↔ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))
5553, 54syl 17 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ∅ ↔ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))
56 df-res 5086 . . . . . . . . . . . . . . 15 ( I ↾ 𝑋) = ( I ∩ (𝑋 × V))
5756ineq2i 3789 . . . . . . . . . . . . . 14 ((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ((𝑐 × 𝑑) ∩ ( I ∩ (𝑋 × V)))
58 inass 3801 . . . . . . . . . . . . . . 15 (((𝑐 × 𝑑) ∩ I ) ∩ (𝑋 × V)) = ((𝑐 × 𝑑) ∩ ( I ∩ (𝑋 × V)))
59 inss1 3811 . . . . . . . . . . . . . . . . . 18 ((𝑐 × 𝑑) ∩ I ) ⊆ (𝑐 × 𝑑)
6059, 51syl5ss 3594 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((𝑐 × 𝑑) ∩ I ) ⊆ (𝑋 × 𝑋))
61 ssv 3604 . . . . . . . . . . . . . . . . . 18 𝑋 ⊆ V
62 xpss2 5190 . . . . . . . . . . . . . . . . . 18 (𝑋 ⊆ V → (𝑋 × 𝑋) ⊆ (𝑋 × V))
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑋 × 𝑋) ⊆ (𝑋 × V)
6460, 63syl6ss 3595 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((𝑐 × 𝑑) ∩ I ) ⊆ (𝑋 × V))
65 df-ss 3569 . . . . . . . . . . . . . . . 16 (((𝑐 × 𝑑) ∩ I ) ⊆ (𝑋 × V) ↔ (((𝑐 × 𝑑) ∩ I ) ∩ (𝑋 × V)) = ((𝑐 × 𝑑) ∩ I ))
6664, 65sylib 208 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (((𝑐 × 𝑑) ∩ I ) ∩ (𝑋 × V)) = ((𝑐 × 𝑑) ∩ I ))
6758, 66syl5eqr 2669 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((𝑐 × 𝑑) ∩ ( I ∩ (𝑋 × V))) = ((𝑐 × 𝑑) ∩ I ))
6857, 67syl5eq 2667 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ((𝑐 × 𝑑) ∩ I ))
6968eqeq1d 2623 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ∅ ↔ ((𝑐 × 𝑑) ∩ I ) = ∅))
70 opelxp 5106 . . . . . . . . . . . . . . . 16 (⟨𝑎, 𝑎⟩ ∈ (𝑐 × 𝑑) ↔ (𝑎𝑐𝑎𝑑))
71 df-br 4614 . . . . . . . . . . . . . . . 16 (𝑎(𝑐 × 𝑑)𝑎 ↔ ⟨𝑎, 𝑎⟩ ∈ (𝑐 × 𝑑))
72 elin 3774 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝑐𝑑) ↔ (𝑎𝑐𝑎𝑑))
7370, 71, 723bitr4i 292 . . . . . . . . . . . . . . 15 (𝑎(𝑐 × 𝑑)𝑎𝑎 ∈ (𝑐𝑑))
7473notbii 310 . . . . . . . . . . . . . 14 𝑎(𝑐 × 𝑑)𝑎 ↔ ¬ 𝑎 ∈ (𝑐𝑑))
7574albii 1744 . . . . . . . . . . . . 13 (∀𝑎 ¬ 𝑎(𝑐 × 𝑑)𝑎 ↔ ∀𝑎 ¬ 𝑎 ∈ (𝑐𝑑))
76 intirr 5473 . . . . . . . . . . . . 13 (((𝑐 × 𝑑) ∩ I ) = ∅ ↔ ∀𝑎 ¬ 𝑎(𝑐 × 𝑑)𝑎)
77 eq0 3905 . . . . . . . . . . . . 13 ((𝑐𝑑) = ∅ ↔ ∀𝑎 ¬ 𝑎 ∈ (𝑐𝑑))
7875, 76, 773bitr4i 292 . . . . . . . . . . . 12 (((𝑐 × 𝑑) ∩ I ) = ∅ ↔ (𝑐𝑑) = ∅)
7969, 78syl6bb 276 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ∅ ↔ (𝑐𝑑) = ∅))
8055, 79bitr3d 270 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ↔ (𝑐𝑑) = ∅))
8180anbi2d 739 . . . . . . . . 9 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (((𝑎𝑐𝑏𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ((𝑎𝑐𝑏𝑑) ∧ (𝑐𝑑) = ∅)))
82 opelxp 5106 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ↔ (𝑎𝑐𝑏𝑑))
8382anbi1i 730 . . . . . . . . 9 ((⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ((𝑎𝑐𝑏𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))
84 df-3an 1038 . . . . . . . . 9 ((𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅) ↔ ((𝑎𝑐𝑏𝑑) ∧ (𝑐𝑑) = ∅))
8581, 83, 843bitr4g 303 . . . . . . . 8 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅)))
86852rexbidva 3049 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) → (∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅)))
8744, 86imbi12d 334 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) → ((¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅))))
88872ralbidva 2982 . . . . 5 (𝐽 ∈ Top → (∀𝑎𝑋𝑏𝑋 (¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ ∀𝑎𝑋𝑏𝑋 (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅))))
8933, 88bitrd 268 . . . 4 (𝐽 ∈ Top → (∀𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ∀𝑎𝑋𝑏𝑋 (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅))))
9014, 16, 893bitrrd 295 . . 3 (𝐽 ∈ Top → (∀𝑎𝑋𝑏𝑋 (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅)) ↔ ( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽))))
9190pm5.32i 668 . 2 ((𝐽 ∈ Top ∧ ∀𝑎𝑋𝑏𝑋 (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅))) ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽))))
922, 91bitri 264 1 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036  wal 1478   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  cdif 3552  cin 3554  wss 3555  c0 3891  cop 4154   cuni 4402   class class class wbr 4613   I cid 4984   × cxp 5072  cres 5076  wf 5843  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  Topctop 20617  Clsdccld 20730  Hauscha 21022   ×t ctx 21273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-topgen 16025  df-top 20621  df-bases 20622  df-topon 20623  df-cld 20733  df-haus 21029  df-tx 21275
This theorem is referenced by:  hauseqlcld  21359  tgphaus  21830  qtophaus  29685
  Copyright terms: Public domain W3C validator