Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hauseqcn Structured version   Visualization version   GIF version

Theorem hauseqcn 30069
Description: In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017.)
Hypotheses
Ref Expression
hauseqcn.x 𝑋 = 𝐽
hauseqcn.k (𝜑𝐾 ∈ Haus)
hauseqcn.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
hauseqcn.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
hauseqcn.e (𝜑 → (𝐹𝐴) = (𝐺𝐴))
hauseqcn.a (𝜑𝐴𝑋)
hauseqcn.c (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
Assertion
Ref Expression
hauseqcn (𝜑𝐹 = 𝐺)

Proof of Theorem hauseqcn
StepHypRef Expression
1 hauseqcn.x . . 3 𝑋 = 𝐽
2 hauseqcn.f . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 cntop1 21092 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
42, 3syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
5 dmin 5364 . . . . . 6 dom (𝐹𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺)
6 eqid 2651 . . . . . . . . . 10 𝐽 = 𝐽
7 eqid 2651 . . . . . . . . . 10 𝐾 = 𝐾
86, 7cnf 21098 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
9 fdm 6089 . . . . . . . . 9 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
102, 8, 93syl 18 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐽)
11 hauseqcn.g . . . . . . . . 9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
126, 7cnf 21098 . . . . . . . . 9 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
13 fdm 6089 . . . . . . . . 9 (𝐺: 𝐽 𝐾 → dom 𝐺 = 𝐽)
1411, 12, 133syl 18 . . . . . . . 8 (𝜑 → dom 𝐺 = 𝐽)
1510, 14ineq12d 3848 . . . . . . 7 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = ( 𝐽 𝐽))
16 inidm 3855 . . . . . . 7 ( 𝐽 𝐽) = 𝐽
1715, 16syl6eq 2701 . . . . . 6 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝐽)
185, 17syl5sseq 3686 . . . . 5 (𝜑 → dom (𝐹𝐺) ⊆ 𝐽)
19 hauseqcn.e . . . . . 6 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
20 ffn 6083 . . . . . . . 8 (𝐹: 𝐽 𝐾𝐹 Fn 𝐽)
212, 8, 203syl 18 . . . . . . 7 (𝜑𝐹 Fn 𝐽)
22 ffn 6083 . . . . . . . 8 (𝐺: 𝐽 𝐾𝐺 Fn 𝐽)
2311, 12, 223syl 18 . . . . . . 7 (𝜑𝐺 Fn 𝐽)
24 hauseqcn.a . . . . . . . 8 (𝜑𝐴𝑋)
2524, 1syl6sseq 3684 . . . . . . 7 (𝜑𝐴 𝐽)
26 fnreseql 6367 . . . . . . 7 ((𝐹 Fn 𝐽𝐺 Fn 𝐽𝐴 𝐽) → ((𝐹𝐴) = (𝐺𝐴) ↔ 𝐴 ⊆ dom (𝐹𝐺)))
2721, 23, 25, 26syl3anc 1366 . . . . . 6 (𝜑 → ((𝐹𝐴) = (𝐺𝐴) ↔ 𝐴 ⊆ dom (𝐹𝐺)))
2819, 27mpbid 222 . . . . 5 (𝜑𝐴 ⊆ dom (𝐹𝐺))
296clsss 20906 . . . . 5 ((𝐽 ∈ Top ∧ dom (𝐹𝐺) ⊆ 𝐽𝐴 ⊆ dom (𝐹𝐺)) → ((cls‘𝐽)‘𝐴) ⊆ ((cls‘𝐽)‘dom (𝐹𝐺)))
304, 18, 28, 29syl3anc 1366 . . . 4 (𝜑 → ((cls‘𝐽)‘𝐴) ⊆ ((cls‘𝐽)‘dom (𝐹𝐺)))
31 hauseqcn.c . . . 4 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
32 hauseqcn.k . . . . . 6 (𝜑𝐾 ∈ Haus)
3332, 2, 11hauseqlcld 21497 . . . . 5 (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))
34 cldcls 20894 . . . . 5 (dom (𝐹𝐺) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘dom (𝐹𝐺)) = dom (𝐹𝐺))
3533, 34syl 17 . . . 4 (𝜑 → ((cls‘𝐽)‘dom (𝐹𝐺)) = dom (𝐹𝐺))
3630, 31, 353sstr3d 3680 . . 3 (𝜑𝑋 ⊆ dom (𝐹𝐺))
371, 36syl5eqssr 3683 . 2 (𝜑 𝐽 ⊆ dom (𝐹𝐺))
38 fneqeql2 6366 . . 3 ((𝐹 Fn 𝐽𝐺 Fn 𝐽) → (𝐹 = 𝐺 𝐽 ⊆ dom (𝐹𝐺)))
3921, 23, 38syl2anc 694 . 2 (𝜑 → (𝐹 = 𝐺 𝐽 ⊆ dom (𝐹𝐺)))
4037, 39mpbird 247 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  wcel 2030  cin 3606  wss 3607   cuni 4468  dom cdm 5143  cres 5145   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  Topctop 20746  Clsdccld 20868  clsccl 20870   Cn ccn 21076  Hauscha 21160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cld 20871  df-cls 20873  df-cn 21079  df-haus 21167  df-tx 21413
This theorem is referenced by:  rrhre  30193
  Copyright terms: Public domain W3C validator