MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflimi Structured version   Visualization version   GIF version

Theorem hausflimi 21689
Description: One direction of hausflim 21690. A filter in a Hausdorff space has at most one limit. (Contributed by FL, 14-Nov-2010.) (Revised by Mario Carneiro, 21-Sep-2015.)
Assertion
Ref Expression
hausflimi (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽

Proof of Theorem hausflimi
Dummy variables 𝑣 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝐽 ∈ Haus)
2 simprll 801 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝐽 fLim 𝐹))
3 eqid 2626 . . . . . . . . . . 11 𝐽 = 𝐽
43flimelbas 21677 . . . . . . . . . 10 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 𝐽)
52, 4syl 17 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥 𝐽)
6 simprlr 802 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑦 ∈ (𝐽 fLim 𝐹))
73flimelbas 21677 . . . . . . . . . 10 (𝑦 ∈ (𝐽 fLim 𝐹) → 𝑦 𝐽)
86, 7syl 17 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑦 𝐽)
9 simprr 795 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥𝑦)
103hausnei 21037 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ∃𝑢𝐽𝑣𝐽 (𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
111, 5, 8, 9, 10syl13anc 1325 . . . . . . . 8 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → ∃𝑢𝐽𝑣𝐽 (𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
12 df-3an 1038 . . . . . . . . . 10 ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) ↔ ((𝑥𝑢𝑦𝑣) ∧ (𝑢𝑣) = ∅))
13 simprl 793 . . . . . . . . . . . . . 14 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)))
14 hausflimlem 21688 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ (𝑢𝐽𝑣𝐽) ∧ (𝑥𝑢𝑦𝑣)) → (𝑢𝑣) ≠ ∅)
15143expa 1262 . . . . . . . . . . . . . 14 ((((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → (𝑢𝑣) ≠ ∅)
1613, 15sylanl1 681 . . . . . . . . . . . . 13 ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → (𝑢𝑣) ≠ ∅)
1716a1d 25 . . . . . . . . . . . 12 ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → (𝑥𝑦 → (𝑢𝑣) ≠ ∅))
1817necon4d 2820 . . . . . . . . . . 11 ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → ((𝑢𝑣) = ∅ → 𝑥 = 𝑦))
1918expimpd 628 . . . . . . . . . 10 (((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) → (((𝑥𝑢𝑦𝑣) ∧ (𝑢𝑣) = ∅) → 𝑥 = 𝑦))
2012, 19syl5bi 232 . . . . . . . . 9 (((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) → ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) → 𝑥 = 𝑦))
2120rexlimdvva 3036 . . . . . . . 8 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → (∃𝑢𝐽𝑣𝐽 (𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) → 𝑥 = 𝑦))
2211, 21mpd 15 . . . . . . 7 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥 = 𝑦)
2322expr 642 . . . . . 6 ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → (𝑥𝑦𝑥 = 𝑦))
2423necon1bd 2814 . . . . 5 ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → (¬ 𝑥 = 𝑦𝑥 = 𝑦))
2524pm2.18d 124 . . . 4 ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → 𝑥 = 𝑦)
2625ex 450 . . 3 (𝐽 ∈ Haus → ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦))
2726alrimivv 1858 . 2 (𝐽 ∈ Haus → ∀𝑥𝑦((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦))
28 eleq1 2692 . . 3 (𝑥 = 𝑦 → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ 𝑦 ∈ (𝐽 fLim 𝐹)))
2928mo4 2521 . 2 (∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦))
3027, 29sylibr 224 1 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wal 1478   = wceq 1480  wcel 1992  ∃*wmo 2475  wne 2796  wrex 2913  cin 3559  c0 3896   cuni 4407  (class class class)co 6605  Hauscha 21017   fLim cflim 21643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-fbas 19657  df-top 20616  df-nei 20807  df-haus 21024  df-fil 21555  df-flim 21648
This theorem is referenced by:  hausflim  21690  hausflf  21706  cmetss  23016  minveclem4a  23104
  Copyright terms: Public domain W3C validator