MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflimi Structured version   Visualization version   GIF version

Theorem hausflimi 21956
Description: One direction of hausflim 21957. A filter in a Hausdorff space has at most one limit. (Contributed by FL, 14-Nov-2010.) (Revised by Mario Carneiro, 21-Sep-2015.)
Assertion
Ref Expression
hausflimi (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽

Proof of Theorem hausflimi
Dummy variables 𝑣 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝐽 ∈ Haus)
2 simprll 821 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝐽 fLim 𝐹))
3 eqid 2748 . . . . . . . . . . 11 𝐽 = 𝐽
43flimelbas 21944 . . . . . . . . . 10 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 𝐽)
52, 4syl 17 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥 𝐽)
6 simprlr 822 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑦 ∈ (𝐽 fLim 𝐹))
73flimelbas 21944 . . . . . . . . . 10 (𝑦 ∈ (𝐽 fLim 𝐹) → 𝑦 𝐽)
86, 7syl 17 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑦 𝐽)
9 simprr 813 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥𝑦)
103hausnei 21305 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ∃𝑢𝐽𝑣𝐽 (𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
111, 5, 8, 9, 10syl13anc 1465 . . . . . . . 8 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → ∃𝑢𝐽𝑣𝐽 (𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
12 df-3an 1074 . . . . . . . . . 10 ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) ↔ ((𝑥𝑢𝑦𝑣) ∧ (𝑢𝑣) = ∅))
13 simprl 811 . . . . . . . . . . . . . 14 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)))
14 hausflimlem 21955 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ (𝑢𝐽𝑣𝐽) ∧ (𝑥𝑢𝑦𝑣)) → (𝑢𝑣) ≠ ∅)
15143expa 1111 . . . . . . . . . . . . . 14 ((((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → (𝑢𝑣) ≠ ∅)
1613, 15sylanl1 685 . . . . . . . . . . . . 13 ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → (𝑢𝑣) ≠ ∅)
1716a1d 25 . . . . . . . . . . . 12 ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → (𝑥𝑦 → (𝑢𝑣) ≠ ∅))
1817necon4d 2944 . . . . . . . . . . 11 ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → ((𝑢𝑣) = ∅ → 𝑥 = 𝑦))
1918expimpd 630 . . . . . . . . . 10 (((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) → (((𝑥𝑢𝑦𝑣) ∧ (𝑢𝑣) = ∅) → 𝑥 = 𝑦))
2012, 19syl5bi 232 . . . . . . . . 9 (((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) → ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) → 𝑥 = 𝑦))
2120rexlimdvva 3164 . . . . . . . 8 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → (∃𝑢𝐽𝑣𝐽 (𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) → 𝑥 = 𝑦))
2211, 21mpd 15 . . . . . . 7 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥 = 𝑦)
2322expr 644 . . . . . 6 ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → (𝑥𝑦𝑥 = 𝑦))
2423necon1bd 2938 . . . . 5 ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → (¬ 𝑥 = 𝑦𝑥 = 𝑦))
2524pm2.18d 124 . . . 4 ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → 𝑥 = 𝑦)
2625ex 449 . . 3 (𝐽 ∈ Haus → ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦))
2726alrimivv 1993 . 2 (𝐽 ∈ Haus → ∀𝑥𝑦((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦))
28 eleq1 2815 . . 3 (𝑥 = 𝑦 → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ 𝑦 ∈ (𝐽 fLim 𝐹)))
2928mo4 2643 . 2 (∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦))
3027, 29sylibr 224 1 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wal 1618   = wceq 1620  wcel 2127  ∃*wmo 2596  wne 2920  wrex 3039  cin 3702  c0 4046   cuni 4576  (class class class)co 6801  Hauscha 21285   fLim cflim 21910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-fbas 19916  df-top 20872  df-nei 21075  df-haus 21292  df-fil 21822  df-flim 21915
This theorem is referenced by:  hausflim  21957  hausflf  21973  cmetss  23284  minveclem4a  23372
  Copyright terms: Public domain W3C validator