MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haust1 Structured version   Visualization version   GIF version

Theorem haust1 21963
Description: A Hausdorff space is a T1 space. (Contributed by FL, 11-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
haust1 (𝐽 ∈ Haus → 𝐽 ∈ Fre)

Proof of Theorem haust1
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . . . . . 9 𝐽 = 𝐽
21hausnei 21939 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))
3 simprr1 1217 . . . . . . . . . . 11 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → 𝑥𝑧)
4 noel 4299 . . . . . . . . . . . . 13 ¬ 𝑦 ∈ ∅
5 simprr3 1219 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑧𝑤) = ∅)
65eleq2d 2901 . . . . . . . . . . . . 13 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑦 ∈ (𝑧𝑤) ↔ 𝑦 ∈ ∅))
74, 6mtbiri 329 . . . . . . . . . . . 12 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → ¬ 𝑦 ∈ (𝑧𝑤))
8 simprr2 1218 . . . . . . . . . . . . 13 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → 𝑦𝑤)
9 elin 4172 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑧𝑤) ↔ (𝑦𝑧𝑦𝑤))
109simplbi2com 505 . . . . . . . . . . . . 13 (𝑦𝑤 → (𝑦𝑧𝑦 ∈ (𝑧𝑤)))
118, 10syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑦𝑧𝑦 ∈ (𝑧𝑤)))
127, 11mtod 200 . . . . . . . . . . 11 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → ¬ 𝑦𝑧)
133, 12jca 514 . . . . . . . . . 10 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑥𝑧 ∧ ¬ 𝑦𝑧))
1413rexlimdvaa 3288 . . . . . . . . 9 (((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) → (∃𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅) → (𝑥𝑧 ∧ ¬ 𝑦𝑧)))
1514reximdva 3277 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → (∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅) → ∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧)))
162, 15mpd 15 . . . . . . 7 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧))
17 rexanali 3268 . . . . . . 7 (∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧) ↔ ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧))
1816, 17sylib 220 . . . . . 6 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧))
19183exp2 1350 . . . . 5 (𝐽 ∈ Haus → (𝑥 𝐽 → (𝑦 𝐽 → (𝑥𝑦 → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧)))))
2019imp32 421 . . . 4 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥𝑦 → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧)))
2120necon4ad 3038 . . 3 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
2221ralrimivva 3194 . 2 (𝐽 ∈ Haus → ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
23 haustop 21942 . . . 4 (𝐽 ∈ Haus → 𝐽 ∈ Top)
24 toptopon2 21529 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2523, 24sylib 220 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ (TopOn‘ 𝐽))
26 ist1-2 21958 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
2725, 26syl 17 . 2 (𝐽 ∈ Haus → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
2822, 27mpbird 259 1 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  cin 3938  c0 4294   cuni 4841  cfv 6358  Topctop 21504  TopOnctopon 21521  Frect1 21918  Hauscha 21919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366  df-topgen 16720  df-top 21505  df-topon 21522  df-cld 21630  df-t1 21925  df-haus 21926
This theorem is referenced by:  sncld  21982  ishaus3  22434  reghaus  22436  nrmhaus  22437  tgpt1  22729  metreg  23474  ipasslem8  28617  sitmcl  31613  onint1  33801  oninhaus  33802  poimirlem30  34926
  Copyright terms: Public domain W3C validator