Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbexg Structured version   Visualization version   GIF version

Theorem hbexg 38275
Description: Closed form of nfex 2151. Derived from hbexgVD 38646. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 12-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbexg (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))

Proof of Theorem hbexg
StepHypRef Expression
1 nfa2 2037 . . 3 𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑)
2 sp 2051 . . . . . . 7 (∀𝑦(𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑))
32alimi 1736 . . . . . 6 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(𝜑 → ∀𝑥𝜑))
4 nf5 2113 . . . . . 6 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
53, 4sylibr 224 . . . . 5 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
61, 5nfexd 2164 . . . 4 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝑦𝜑)
7 nf5 2113 . . . 4 (Ⅎ𝑥𝑦𝜑 ↔ ∀𝑥(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
86, 7sylib 208 . . 3 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
91, 8alrimi 2080 . 2 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑥(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
10 alcom 2034 . 2 (∀𝑦𝑥(∃𝑦𝜑 → ∀𝑥𝑦𝜑) ↔ ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
119, 10sylib 208 1 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1478  wex 1701  wnf 1705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-11 2031  ax-12 2044
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1702  df-nf 1707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator