Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbra2VD Structured version   Visualization version   GIF version

Theorem hbra2VD 38618
Description: Virtual deduction proof of nfra2 2942. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (∀𝑦𝐵𝑥𝐴𝜑 𝑦𝑦𝐵𝑥𝐴𝜑)
2:: (∀𝑥𝐴𝑦𝐵𝜑 𝑦𝐵𝑥𝐴𝜑)
3:1,2,?: e00 38516 (∀𝑥𝐴𝑦𝐵𝜑 𝑦𝑦𝐵𝑥𝐴𝜑)
4:2: 𝑦(∀𝑥𝐴𝑦𝐵𝜑 𝑦𝐵𝑥𝐴𝜑)
5:4,?: e0a 38520 (∀𝑦𝑥𝐴𝑦𝐵𝜑 𝑦𝑦𝐵𝑥𝐴𝜑)
qed:3,5,?: e00 38516 (∀𝑥𝐴𝑦𝐵𝜑 𝑦𝑥𝐴𝑦𝐵𝜑)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbra2VD (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem hbra2VD
StepHypRef Expression
1 ralcom 3092 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
2 hbra1 2938 . 2 (∀𝑦𝐵𝑥𝐴 𝜑 → ∀𝑦𝑦𝐵𝑥𝐴 𝜑)
31, 2hbxfrbi 1749 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1478  wral 2908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator