 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsb2 Structured version   Visualization version   GIF version

Theorem hbsb2 2343
 Description: Bound-variable hypothesis builder for substitution. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
hbsb2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))

Proof of Theorem hbsb2
StepHypRef Expression
1 sb4 2340 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 sb2 2336 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
32axc4i 2114 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥[𝑦 / 𝑥]𝜑)
41, 3syl6 34 1 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1472  [wsb 1866 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-12 2032  ax-13 2229 This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867 This theorem is referenced by:  nfsb2  2344  hbs1  2420
 Copyright terms: Public domain W3C validator