Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem7 Structured version   Visualization version   GIF version

Theorem hbtlem7 39731
Description: Functionality of leading coefficient ideal sequence. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem7.t 𝑇 = (LIdeal‘𝑅)
Assertion
Ref Expression
hbtlem7 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼):ℕ0𝑇)

Proof of Theorem hbtlem7
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . . . . 9 (((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) → 𝑦 = ((coe1𝑗)‘𝑥))
21reximi 3246 . . . . . . . 8 (∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) → ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥))
32ss2abi 4046 . . . . . . 7 {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ⊆ {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)}
4 abrexexg 7665 . . . . . . 7 (𝐼𝑈 → {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)} ∈ V)
5 ssexg 5230 . . . . . . 7 (({𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ⊆ {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)} ∧ {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)} ∈ V) → {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
63, 4, 5sylancr 589 . . . . . 6 (𝐼𝑈 → {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
76ralrimivw 3186 . . . . 5 (𝐼𝑈 → ∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
87adantl 484 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
9 eqid 2824 . . . . 5 (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})
109fnmpt 6491 . . . 4 (∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) Fn ℕ0)
118, 10syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) Fn ℕ0)
12 hbtlem.s . . . . . . 7 𝑆 = (ldgIdlSeq‘𝑅)
13 elex 3515 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ V)
14 fveq2 6673 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
15 hbtlem.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
1614, 15syl6eqr 2877 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
1716fveq2d 6677 . . . . . . . . . . 11 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = (LIdeal‘𝑃))
18 hbtlem.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑃)
1917, 18syl6eqr 2877 . . . . . . . . . 10 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = 𝑈)
20 fveq2 6673 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
2120fveq1d 6675 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑗) = (( deg1𝑅)‘𝑗))
2221breq1d 5079 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → ((( deg1𝑟)‘𝑗) ≤ 𝑥 ↔ (( deg1𝑅)‘𝑗) ≤ 𝑥))
2322anbi1d 631 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) ↔ ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))))
2423rexbidv 3300 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (∃𝑗𝑖 ((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) ↔ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))))
2524abbidv 2888 . . . . . . . . . . 11 (𝑟 = 𝑅 → {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} = {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})
2625mpteq2dv 5165 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
2719, 26mpteq12dv 5154 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
28 df-ldgis 39728 . . . . . . . . 9 ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
2927, 28, 18mptfvmpt 6993 . . . . . . . 8 (𝑅 ∈ V → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
3013, 29syl 17 . . . . . . 7 (𝑅 ∈ Ring → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
3112, 30syl5eq 2871 . . . . . 6 (𝑅 ∈ Ring → 𝑆 = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
3231fveq1d 6675 . . . . 5 (𝑅 ∈ Ring → (𝑆𝐼) = ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))‘𝐼))
33 rexeq 3409 . . . . . . . 8 (𝑖 = 𝐼 → (∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) ↔ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))))
3433abbidv 2888 . . . . . . 7 (𝑖 = 𝐼 → {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} = {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})
3534mpteq2dv 5165 . . . . . 6 (𝑖 = 𝐼 → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
36 eqid 2824 . . . . . 6 (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
37 nn0ex 11906 . . . . . . 7 0 ∈ V
3837mptex 6989 . . . . . 6 (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) ∈ V
3935, 36, 38fvmpt 6771 . . . . 5 (𝐼𝑈 → ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
4032, 39sylan9eq 2879 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
4140fneq1d 6449 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑆𝐼) Fn ℕ0 ↔ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) Fn ℕ0))
4211, 41mpbird 259 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼) Fn ℕ0)
43 hbtlem7.t . . . . 5 𝑇 = (LIdeal‘𝑅)
4415, 18, 12, 43hbtlem2 39730 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑥 ∈ ℕ0) → ((𝑆𝐼)‘𝑥) ∈ 𝑇)
45443expa 1114 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥 ∈ ℕ0) → ((𝑆𝐼)‘𝑥) ∈ 𝑇)
4645ralrimiva 3185 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ∀𝑥 ∈ ℕ0 ((𝑆𝐼)‘𝑥) ∈ 𝑇)
47 ffnfv 6885 . 2 ((𝑆𝐼):ℕ0𝑇 ↔ ((𝑆𝐼) Fn ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑆𝐼)‘𝑥) ∈ 𝑇))
4842, 46, 47sylanbrc 585 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼):ℕ0𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  {cab 2802  wral 3141  wrex 3142  Vcvv 3497  wss 3939   class class class wbr 5069  cmpt 5149   Fn wfn 6353  wf 6354  cfv 6358  cle 10679  0cn0 11900  Ringcrg 19300  LIdealclidl 19945  Poly1cpl1 20348  coe1cco1 20349   deg1 cdg1 24651  ldgIdlSeqcldgis 39727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-0g 16718  df-gsum 16719  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-ghm 18359  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-cring 19303  df-subrg 19536  df-lmod 19639  df-lss 19707  df-sra 19947  df-rgmod 19948  df-lidl 19949  df-ascl 20090  df-psr 20139  df-mvr 20140  df-mpl 20141  df-opsr 20143  df-psr1 20351  df-vr1 20352  df-ply1 20353  df-coe1 20354  df-cnfld 20549  df-mdeg 24652  df-deg1 24653  df-ldgis 39728
This theorem is referenced by:  hbt  39736
  Copyright terms: Public domain W3C validator