Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6d Structured version   Visualization version   GIF version

Theorem hdmap1l6d 38951
Description: Lemmma for hdmap1l6 38959. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
hdmap1l6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
hdmap1l6d (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))

Proof of Theorem hdmap1l6d
StepHypRef Expression
1 hdmap1l6.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 hdmap1l6.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 38730 . . . . 5 (𝜑𝐶 ∈ LMod)
5 hdmap1l6.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 hdmap1l6.v . . . . . 6 𝑉 = (Base‘𝑈)
7 hdmap1l6c.o . . . . . 6 0 = (0g𝑈)
8 hdmap1l6.n . . . . . 6 𝑁 = (LSpan‘𝑈)
9 hdmap1l6.d . . . . . 6 𝐷 = (Base‘𝐶)
10 hdmap1l6.l . . . . . 6 𝐿 = (LSpan‘𝐶)
11 hdmap1l6.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
12 hdmap1l6.i . . . . . 6 𝐼 = ((HDMap1‘𝐾)‘𝑊)
13 hdmap1l6.f . . . . . 6 (𝜑𝐹𝐷)
14 hdmap1l6.mn . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
151, 5, 3dvhlvec 38247 . . . . . . . . 9 (𝜑𝑈 ∈ LVec)
16 hdmap1l6d.w . . . . . . . . . 10 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
1716eldifad 3950 . . . . . . . . 9 (𝜑𝑤𝑉)
18 hdmap1l6cl.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1918eldifad 3950 . . . . . . . . 9 (𝜑𝑋𝑉)
20 hdmap1l6d.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3950 . . . . . . . . 9 (𝜑𝑌𝑉)
22 hdmap1l6d.wn . . . . . . . . 9 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
236, 8, 15, 17, 19, 21, 22lspindpi 19906 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
2423simpld 497 . . . . . . 7 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
2524necomd 3073 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
261, 5, 6, 7, 8, 2, 9, 10, 11, 12, 3, 13, 14, 25, 18, 17hdmap1cl 38942 . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷)
27 hdmap1l6.a . . . . . 6 = (+g𝐶)
28 hdmap1l6.q . . . . . 6 𝑄 = (0g𝐶)
299, 27, 28lmod0vrid 19667 . . . . 5 ((𝐶 ∈ LMod ∧ (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
304, 26, 29syl2anc 586 . . . 4 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
3130adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
32 oteq3 4816 . . . . . 6 ((𝑌 + 𝑍) = 0 → ⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩ = ⟨𝑋, 𝐹, 0 ⟩)
3332fveq2d 6676 . . . . 5 ((𝑌 + 𝑍) = 0 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, 0 ⟩))
341, 5, 6, 7, 2, 9, 28, 12, 3, 13, 19hdmap1val0 38937 . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
3533, 34sylan9eqr 2880 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = 𝑄)
3635oveq2d 7174 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄))
37 oveq2 7166 . . . . . 6 ((𝑌 + 𝑍) = 0 → (𝑤 + (𝑌 + 𝑍)) = (𝑤 + 0 ))
381, 5, 3dvhlmod 38248 . . . . . . 7 (𝜑𝑈 ∈ LMod)
39 hdmap1l6.p . . . . . . . 8 + = (+g𝑈)
406, 39, 7lmod0vrid 19667 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉) → (𝑤 + 0 ) = 𝑤)
4138, 17, 40syl2anc 586 . . . . . 6 (𝜑 → (𝑤 + 0 ) = 𝑤)
4237, 41sylan9eqr 2880 . . . . 5 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑤 + (𝑌 + 𝑍)) = 𝑤)
4342oteq3d 4819 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
4443fveq2d 6676 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
4531, 36, 443eqtr4rd 2869 . 2 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
46 hdmap1l6.s . . 3 = (-g𝑈)
47 hdmap1l6.r . . 3 𝑅 = (-g𝐶)
483adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4913adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝐹𝐷)
5018adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
5114adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
5216adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 }))
53 hdmap1l6d.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
5453eldifad 3950 . . . . . 6 (𝜑𝑍𝑉)
556, 39lmodvacl 19650 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
5638, 21, 54, 55syl3anc 1367 . . . . 5 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
5756anim1i 616 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
58 eldifsn 4721 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
5957, 58sylibr 236 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
60 hdmap1l6d.yz . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
61 hdmap1l6d.xn . . . . . . . . 9 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
626, 8, 15, 19, 21, 54, 61lspindpi 19906 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
6362simpld 497 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
646, 39, 7, 8, 15, 18, 20, 53, 16, 60, 63, 22mapdindp1 38858 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
656, 39, 7, 8, 15, 18, 20, 53, 16, 60, 63, 22mapdindp2 38859 . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
666, 7, 8, 15, 18, 56, 17, 64, 65lspindp1 19907 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)})))
6766simprd 498 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))
6867adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))
6923simprd 498 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
706, 7, 8, 15, 16, 21, 69lspsnne1 19891 . . . . . . . 8 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌}))
71 eqid 2823 . . . . . . . . . 10 (LSSum‘𝑈) = (LSSum‘𝑈)
726, 8, 71, 38, 21, 54lsmpr 19863 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))
7360oveq2d 7174 . . . . . . . . 9 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))
74 eqid 2823 . . . . . . . . . . . . 13 (LSubSp‘𝑈) = (LSubSp‘𝑈)
756, 74, 8lspsncl 19751 . . . . . . . . . . . 12 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
7638, 21, 75syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
7774lsssubg 19731 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈))
7838, 76, 77syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈))
7971lsmidm 18790 . . . . . . . . . 10 ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑈) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
8078, 79syl 17 . . . . . . . . 9 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
8172, 73, 803eqtr2d 2864 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌}))
8270, 81neleqtrrd 2937 . . . . . . 7 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑍}))
836, 39, 8, 38, 21, 54, 17, 82lspindp4 19911 . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, (𝑌 + 𝑍)}))
846, 8, 15, 17, 21, 56, 83lspindpi 19906 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)})))
8584simprd 498 . . . 4 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
8685adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
87 eqidd 2824 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
88 eqidd 2824 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩))
891, 5, 6, 39, 46, 7, 8, 2, 9, 27, 47, 28, 10, 11, 12, 48, 49, 50, 51, 52, 59, 68, 86, 87, 88hdmap1l6a 38947 . 2 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
9045, 89pm2.61dane 3106 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  cdif 3935  {csn 4569  {cpr 4571  cotp 4577  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  0gc0g 16715  -gcsg 18107  SubGrpcsubg 18275  LSSumclsm 18761  LModclmod 19636  LSubSpclss 19705  LSpanclspn 19745  HLchlt 36488  LHypclh 37122  DVecHcdvh 38216  LCDualclcd 38724  mapdcmpd 38762  HDMap1chdma1 38929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-undef 7941  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-mre 16859  df-mrc 16860  df-acs 16862  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-oppg 18476  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lsatoms 36114  df-lshyp 36115  df-lcv 36157  df-lfl 36196  df-lkr 36224  df-ldual 36262  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tgrp 37881  df-tendo 37893  df-edring 37895  df-dveca 38141  df-disoa 38167  df-dvech 38217  df-dib 38277  df-dic 38311  df-dih 38367  df-doch 38486  df-djh 38533  df-lcdual 38725  df-mapd 38763  df-hdmap1 38931
This theorem is referenced by:  hdmap1l6g  38954
  Copyright terms: Public domain W3C validator