Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1val2 Structured version   Visualization version   GIF version

Theorem hdmap1val2 38930
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero 𝑌. (Contributed by NM, 16-May-2015.)
Hypotheses
Ref Expression
hdmap1val2.h 𝐻 = (LHyp‘𝐾)
hdmap1val2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1val2.v 𝑉 = (Base‘𝑈)
hdmap1val2.s = (-g𝑈)
hdmap1val2.o 0 = (0g𝑈)
hdmap1val2.n 𝑁 = (LSpan‘𝑈)
hdmap1val2.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1val2.d 𝐷 = (Base‘𝐶)
hdmap1val2.r 𝑅 = (-g𝐶)
hdmap1val2.l 𝐿 = (LSpan‘𝐶)
hdmap1val2.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1val2.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1val2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1val2.x (𝜑𝑋𝑉)
hdmap1val2.f (𝜑𝐹𝐷)
hdmap1val2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
hdmap1val2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
Distinct variable groups:   𝐶,   𝐷,   ,𝐹   ,𝐿   ,𝑀   ,𝑁   𝑈,   ,𝑉   ,𝑋   ,𝑌   𝜑,
Allowed substitution hints:   𝑅()   𝐻()   𝐼()   𝐾()   ()   𝑊()   0 ()

Proof of Theorem hdmap1val2
StepHypRef Expression
1 hdmap1val2.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1val2.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1val2.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1val2.s . . 3 = (-g𝑈)
5 hdmap1val2.o . . 3 0 = (0g𝑈)
6 hdmap1val2.n . . 3 𝑁 = (LSpan‘𝑈)
7 hdmap1val2.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1val2.d . . 3 𝐷 = (Base‘𝐶)
9 hdmap1val2.r . . 3 𝑅 = (-g𝐶)
10 eqid 2821 . . 3 (0g𝐶) = (0g𝐶)
11 hdmap1val2.l . . 3 𝐿 = (LSpan‘𝐶)
12 hdmap1val2.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1val2.i . . 3 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1val2.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1val2.x . . 3 (𝜑𝑋𝑉)
16 hdmap1val2.f . . 3 (𝜑𝐹𝐷)
17 hdmap1val2.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1817eldifad 3947 . . 3 (𝜑𝑌𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18hdmap1val 38928 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = if(𝑌 = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})))))
20 eldifsni 4715 . . . 4 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
2120neneqd 3021 . . 3 (𝑌 ∈ (𝑉 ∖ { 0 }) → ¬ 𝑌 = 0 )
22 iffalse 4475 . . 3 𝑌 = 0 → if(𝑌 = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})))) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
2317, 21, 223syl 18 . 2 (𝜑 → if(𝑌 = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})))) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
2419, 23eqtrd 2856 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  cdif 3932  ifcif 4466  {csn 4560  cotp 4568  cfv 6349  crio 7107  (class class class)co 7150  Basecbs 16477  0gc0g 16707  -gcsg 18099  LSpanclspn 19737  HLchlt 36480  LHypclh 37114  DVecHcdvh 38208  LCDualclcd 38716  mapdcmpd 38754  HDMap1chdma1 38921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-ot 4569  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-1st 7683  df-2nd 7684  df-hdmap1 38923
This theorem is referenced by:  hdmap1eq  38931
  Copyright terms: Public domain W3C validator