![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1val2 | Structured version Visualization version GIF version |
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero 𝑌. (Contributed by NM, 16-May-2015.) |
Ref | Expression |
---|---|
hdmap1val2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1val2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1val2.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1val2.s | ⊢ − = (-g‘𝑈) |
hdmap1val2.o | ⊢ 0 = (0g‘𝑈) |
hdmap1val2.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1val2.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1val2.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1val2.r | ⊢ 𝑅 = (-g‘𝐶) |
hdmap1val2.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap1val2.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1val2.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1val2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1val2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hdmap1val2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1val2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
hdmap1val2 | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1val2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1val2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1val2.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap1val2.s | . . 3 ⊢ − = (-g‘𝑈) | |
5 | hdmap1val2.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | hdmap1val2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | hdmap1val2.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap1val2.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
9 | hdmap1val2.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
10 | eqid 2651 | . . 3 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
11 | hdmap1val2.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
12 | hdmap1val2.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | hdmap1val2.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
14 | hdmap1val2.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | hdmap1val2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
16 | hdmap1val2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
17 | hdmap1val2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
18 | 17 | eldifad 3619 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18 | hdmap1val 37405 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)}))))) |
20 | eldifsni 4353 | . . . 4 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
21 | 20 | neneqd 2828 | . . 3 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → ¬ 𝑌 = 0 ) |
22 | iffalse 4128 | . . 3 ⊢ (¬ 𝑌 = 0 → if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) | |
23 | 17, 21, 22 | 3syl 18 | . 2 ⊢ (𝜑 → if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
24 | 19, 23 | eqtrd 2685 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 ifcif 4119 {csn 4210 〈cotp 4218 ‘cfv 5926 ℩crio 6650 (class class class)co 6690 Basecbs 15904 0gc0g 16147 -gcsg 17471 LSpanclspn 19019 HLchlt 34955 LHypclh 35588 DVecHcdvh 36684 LCDualclcd 37192 mapdcmpd 37230 HDMap1chdma1 37398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-ot 4219 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-1st 7210 df-2nd 7211 df-hdmap1 37400 |
This theorem is referenced by: hdmap1eq 37408 |
Copyright terms: Public domain | W3C validator |