![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapglem5 | Structured version Visualization version GIF version |
Description: Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.) |
Ref | Expression |
---|---|
hdmapglem5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapglem5.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapglem5.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
hdmapglem5.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapglem5.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapglem5.p | ⊢ + = (+g‘𝑈) |
hdmapglem5.m | ⊢ − = (-g‘𝑈) |
hdmapglem5.q | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmapglem5.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmapglem5.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmapglem5.t | ⊢ × = (.r‘𝑅) |
hdmapglem5.z | ⊢ 0 = (0g‘𝑅) |
hdmapglem5.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapglem5.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hdmapglem5.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapglem5.c | ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) |
hdmapglem5.d | ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) |
hdmapglem5.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
hdmapglem5.j | ⊢ (𝜑 → 𝐽 ∈ 𝐵) |
Ref | Expression |
---|---|
hdmapglem5 | ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapglem5.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmapglem5.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmapglem5.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlmod 36716 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
5 | hdmapglem5.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | 5 | lmodring 18919 | . . . 4 ⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | hdmapglem5.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
9 | hdmapglem5.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
10 | hdmapglem5.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
11 | hdmapglem5.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
12 | eqid 2651 | . . . . . . . . . 10 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | eqid 2651 | . . . . . . . . . 10 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
14 | eqid 2651 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
15 | hdmapglem5.e | . . . . . . . . . 10 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
16 | 1, 12, 13, 2, 10, 14, 15, 3 | dvheveccl 36718 | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
17 | 16 | eldifad 3619 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
18 | 17 | snssd 4372 | . . . . . . 7 ⊢ (𝜑 → {𝐸} ⊆ 𝑉) |
19 | hdmapglem5.o | . . . . . . . 8 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
20 | 1, 2, 10, 19 | dochssv 36961 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉) |
21 | 3, 18, 20 | syl2anc 694 | . . . . . 6 ⊢ (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉) |
22 | hdmapglem5.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) | |
23 | 21, 22 | sseldd 3637 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
24 | hdmapglem5.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) | |
25 | 21, 24 | sseldd 3637 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
26 | 1, 2, 10, 5, 8, 11, 3, 23, 25 | hdmapipcl 37514 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) ∈ 𝐵) |
27 | 1, 2, 5, 8, 9, 3, 26 | hgmapcl 37498 | . . 3 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) ∈ 𝐵) |
28 | hdmapglem5.t | . . . 4 ⊢ × = (.r‘𝑅) | |
29 | eqid 2651 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
30 | 8, 28, 29 | ringlidm 18617 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐺‘((𝑆‘𝐷)‘𝐶)) ∈ 𝐵) → ((1r‘𝑅) × (𝐺‘((𝑆‘𝐷)‘𝐶))) = (𝐺‘((𝑆‘𝐷)‘𝐶))) |
31 | 7, 27, 30 | syl2anc 694 | . 2 ⊢ (𝜑 → ((1r‘𝑅) × (𝐺‘((𝑆‘𝐷)‘𝐶))) = (𝐺‘((𝑆‘𝐷)‘𝐶))) |
32 | hdmapglem5.p | . . 3 ⊢ + = (+g‘𝑈) | |
33 | hdmapglem5.m | . . 3 ⊢ − = (-g‘𝑈) | |
34 | hdmapglem5.q | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
35 | hdmapglem5.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
36 | 8, 29 | ringidcl 18614 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
37 | 7, 36 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
38 | 1, 2, 5, 29, 9, 3 | hgmapval1 37502 | . . . . 5 ⊢ (𝜑 → (𝐺‘(1r‘𝑅)) = (1r‘𝑅)) |
39 | 38 | oveq2d 6706 | . . . 4 ⊢ (𝜑 → (((𝑆‘𝐷)‘𝐶) × (𝐺‘(1r‘𝑅))) = (((𝑆‘𝐷)‘𝐶) × (1r‘𝑅))) |
40 | 8, 28, 29 | ringridm 18618 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ ((𝑆‘𝐷)‘𝐶) ∈ 𝐵) → (((𝑆‘𝐷)‘𝐶) × (1r‘𝑅)) = ((𝑆‘𝐷)‘𝐶)) |
41 | 7, 26, 40 | syl2anc 694 | . . . 4 ⊢ (𝜑 → (((𝑆‘𝐷)‘𝐶) × (1r‘𝑅)) = ((𝑆‘𝐷)‘𝐶)) |
42 | 39, 41 | eqtrd 2685 | . . 3 ⊢ (𝜑 → (((𝑆‘𝐷)‘𝐶) × (𝐺‘(1r‘𝑅))) = ((𝑆‘𝐷)‘𝐶)) |
43 | 1, 15, 19, 2, 10, 32, 33, 34, 5, 8, 28, 35, 11, 9, 3, 22, 24, 26, 37, 42 | hdmapinvlem4 37530 | . 2 ⊢ (𝜑 → ((1r‘𝑅) × (𝐺‘((𝑆‘𝐷)‘𝐶))) = ((𝑆‘𝐶)‘𝐷)) |
44 | 31, 43 | eqtr3d 2687 | 1 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 {csn 4210 〈cop 4216 I cid 5052 ↾ cres 5145 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 .rcmulr 15989 Scalarcsca 15991 ·𝑠 cvsca 15992 0gc0g 16147 -gcsg 17471 1rcur 18547 Ringcrg 18593 LModclmod 18911 HLchlt 34955 LHypclh 35588 LTrncltrn 35705 DVecHcdvh 36684 ocHcoch 36953 HDMapchdma 37399 HGMapchg 37492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-riotaBAD 34557 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-ot 4219 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-undef 7444 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-0g 16149 df-mre 16293 df-mrc 16294 df-acs 16296 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-subg 17638 df-cntz 17796 df-oppg 17822 df-lsm 18097 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-drng 18797 df-lmod 18913 df-lss 18981 df-lsp 19020 df-lvec 19151 df-lsatoms 34581 df-lshyp 34582 df-lcv 34624 df-lfl 34663 df-lkr 34691 df-ldual 34729 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-llines 35102 df-lplanes 35103 df-lvols 35104 df-lines 35105 df-psubsp 35107 df-pmap 35108 df-padd 35400 df-lhyp 35592 df-laut 35593 df-ldil 35708 df-ltrn 35709 df-trl 35764 df-tgrp 36348 df-tendo 36360 df-edring 36362 df-dveca 36608 df-disoa 36635 df-dvech 36685 df-dib 36745 df-dic 36779 df-dih 36835 df-doch 36954 df-djh 37001 df-lcdual 37193 df-mapd 37231 df-hvmap 37363 df-hdmap1 37400 df-hdmap 37401 df-hgmap 37493 |
This theorem is referenced by: hgmapvvlem1 37532 hdmapglem7 37538 |
Copyright terms: Public domain | W3C validator |