![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem4N | Structured version Visualization version GIF version |
Description: Part of proof of part 12 in [Baer] p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmaprnlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmaprnlem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmaprnlem1.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmaprnlem1.se | ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) |
hdmaprnlem1.ve | ⊢ (𝜑 → 𝑣 ∈ 𝑉) |
hdmaprnlem1.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) |
hdmaprnlem1.ue | ⊢ (𝜑 → 𝑢 ∈ 𝑉) |
hdmaprnlem1.un | ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) |
hdmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
hdmaprnlem1.a | ⊢ ✚ = (+g‘𝐶) |
hdmaprnlem1.t2 | ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) |
Ref | Expression |
---|---|
hdmaprnlem4N | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
2 | hdmaprnlem1.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
3 | hdmaprnlem1.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | hdmaprnlem1.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | hdmaprnlem1.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 3, 4, 5 | dvhlmod 36716 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
7 | hdmaprnlem1.ve | . . . . . 6 ⊢ (𝜑 → 𝑣 ∈ 𝑉) | |
8 | hdmaprnlem1.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
9 | 8, 1, 2 | lspsncl 19025 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
10 | 6, 7, 9 | syl2anc 694 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
11 | hdmaprnlem1.t2 | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) | |
12 | 11 | eldifad 3619 | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ (𝑁‘{𝑣})) |
13 | 1, 2, 6, 10, 12 | lspsnel5a 19044 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑡}) ⊆ (𝑁‘{𝑣})) |
14 | hdmaprnlem1.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
15 | 3, 4, 5 | dvhlvec 36715 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) |
16 | 8, 1 | lss1 18987 | . . . . . . . . 9 ⊢ (𝑈 ∈ LMod → 𝑉 ∈ (LSubSp‘𝑈)) |
17 | 6, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ (LSubSp‘𝑈)) |
18 | 1, 2, 6, 17, 7 | lspsnel5a 19044 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑣}) ⊆ 𝑉) |
19 | 18 | ssdifd 3779 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑣}) ∖ { 0 }) ⊆ (𝑉 ∖ { 0 })) |
20 | 19, 11 | sseldd 3637 | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) |
21 | 8, 14, 2, 15, 20, 7 | lspsncmp 19164 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑡}) ⊆ (𝑁‘{𝑣}) ↔ (𝑁‘{𝑡}) = (𝑁‘{𝑣}))) |
22 | 13, 21 | mpbid 222 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑡}) = (𝑁‘{𝑣})) |
23 | 22 | fveq2d 6233 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝑀‘(𝑁‘{𝑣}))) |
24 | hdmaprnlem1.e | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) | |
25 | 23, 24 | eqtrd 2685 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 ⊆ wss 3607 {csn 4210 ‘cfv 5926 Basecbs 15904 +gcplusg 15988 0gc0g 16147 LModclmod 18911 LSubSpclss 18980 LSpanclspn 19019 HLchlt 34955 LHypclh 35588 DVecHcdvh 36684 LCDualclcd 37192 mapdcmpd 37230 HDMapchdma 37399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-riotaBAD 34557 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-undef 7444 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-0g 16149 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-drng 18797 df-lmod 18913 df-lss 18981 df-lsp 19020 df-lvec 19151 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-llines 35102 df-lplanes 35103 df-lvols 35104 df-lines 35105 df-psubsp 35107 df-pmap 35108 df-padd 35400 df-lhyp 35592 df-laut 35593 df-ldil 35708 df-ltrn 35709 df-trl 35764 df-tendo 36360 df-edring 36362 df-dvech 36685 |
This theorem is referenced by: hdmaprnlem8N 37465 hdmaprnlem9N 37466 |
Copyright terms: Public domain | W3C validator |