Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor Structured version   Visualization version   GIF version

Theorem heibor 35101
Description: Generalized Heine-Borel Theorem. A metric space is compact iff it is complete and totally bounded. See heibor1 35090 and heiborlem1 35091 for a description of the proof. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jan-2014.)
Hypothesis
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
heibor ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ↔ (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))

Proof of Theorem heibor
Dummy variables 𝑡 𝑛 𝑦 𝑘 𝑟 𝑢 𝑚 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . 3 𝐽 = (MetOpen‘𝐷)
21heibor1 35090 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
3 cmetmet 23891 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
43adantr 483 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐷 ∈ (Met‘𝑋))
5 metxmet 22946 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
61mopntop 23052 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
73, 5, 63syl 18 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐽 ∈ Top)
87adantr 483 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐽 ∈ Top)
9 istotbnd 35049 . . . . . . . . . . . . 13 (𝐷 ∈ (TotBnd‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟))))
109simprbi 499 . . . . . . . . . . . 12 (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑟 ∈ ℝ+𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)))
11 2nn 11713 . . . . . . . . . . . . . . 15 2 ∈ ℕ
12 nnexpcl 13445 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
1311, 12mpan 688 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ)
1413nnrpd 12432 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℝ+)
1514rpreccld 12444 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (1 / (2↑𝑛)) ∈ ℝ+)
16 oveq2 7166 . . . . . . . . . . . . . . . . . 18 (𝑟 = (1 / (2↑𝑛)) → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
1716eqeq2d 2834 . . . . . . . . . . . . . . . . 17 (𝑟 = (1 / (2↑𝑛)) → (𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
1817rexbidv 3299 . . . . . . . . . . . . . . . 16 (𝑟 = (1 / (2↑𝑛)) → (∃𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ ∃𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
1918ralbidv 3199 . . . . . . . . . . . . . . 15 (𝑟 = (1 / (2↑𝑛)) → (∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
2019anbi2d 630 . . . . . . . . . . . . . 14 (𝑟 = (1 / (2↑𝑛)) → (( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ↔ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
2120rexbidv 3299 . . . . . . . . . . . . 13 (𝑟 = (1 / (2↑𝑛)) → (∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ↔ ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
2221rspccva 3624 . . . . . . . . . . . 12 ((∀𝑟 ∈ ℝ+𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ∧ (1 / (2↑𝑛)) ∈ ℝ+) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
2310, 15, 22syl2an 597 . . . . . . . . . . 11 ((𝐷 ∈ (TotBnd‘𝑋) ∧ 𝑛 ∈ ℕ0) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
2423expcom 416 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
2524adantl 484 . . . . . . . . 9 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
26 oveq1 7165 . . . . . . . . . . . . . . 15 (𝑦 = (𝑚𝑣) → (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
2726eqeq2d 2834 . . . . . . . . . . . . . 14 (𝑦 = (𝑚𝑣) → (𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
2827ac6sfi 8764 . . . . . . . . . . . . 13 ((𝑢 ∈ Fin ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
2928adantrl 714 . . . . . . . . . . . 12 ((𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
3029adantl 484 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
31 simp3l 1197 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑚:𝑢𝑋)
3231frnd 6523 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚𝑋)
331mopnuni 23053 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
343, 5, 333syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (CMet‘𝑋) → 𝑋 = 𝐽)
3534adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑋 = 𝐽)
36353ad2ant1 1129 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑋 = 𝐽)
3732, 36sseqtrd 4009 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 𝐽)
381fvexi 6686 . . . . . . . . . . . . . . . . . . 19 𝐽 ∈ V
3938uniex 7469 . . . . . . . . . . . . . . . . . 18 𝐽 ∈ V
4039elpw2 5250 . . . . . . . . . . . . . . . . 17 (ran 𝑚 ∈ 𝒫 𝐽 ↔ ran 𝑚 𝐽)
4137, 40sylibr 236 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ 𝒫 𝐽)
42 simp2l 1195 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑢 ∈ Fin)
43 ffn 6516 . . . . . . . . . . . . . . . . . . 19 (𝑚:𝑢𝑋𝑚 Fn 𝑢)
44 dffn4 6598 . . . . . . . . . . . . . . . . . . 19 (𝑚 Fn 𝑢𝑚:𝑢onto→ran 𝑚)
4543, 44sylib 220 . . . . . . . . . . . . . . . . . 18 (𝑚:𝑢𝑋𝑚:𝑢onto→ran 𝑚)
46 fofi 8812 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ Fin ∧ 𝑚:𝑢onto→ran 𝑚) → ran 𝑚 ∈ Fin)
4745, 46sylan2 594 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ Fin ∧ 𝑚:𝑢𝑋) → ran 𝑚 ∈ Fin)
4842, 31, 47syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ Fin)
4941, 48elind 4173 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ (𝒫 𝐽 ∩ Fin))
5026eleq2d 2900 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑚𝑣) → (𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑟 ∈ ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
5150rexrn 6855 . . . . . . . . . . . . . . . . . . 19 (𝑚 Fn 𝑢 → (∃𝑦 ∈ ran 𝑚 𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑣𝑢 𝑟 ∈ ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
52 eliun 4925 . . . . . . . . . . . . . . . . . . 19 (𝑟 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑦 ∈ ran 𝑚 𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
53 eliun 4925 . . . . . . . . . . . . . . . . . . 19 (𝑟 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑣𝑢 𝑟 ∈ ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
5451, 52, 533bitr4g 316 . . . . . . . . . . . . . . . . . 18 (𝑚 Fn 𝑢 → (𝑟 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑟 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
5554eqrdv 2821 . . . . . . . . . . . . . . . . 17 (𝑚 Fn 𝑢 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
5631, 43, 553syl 18 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
57 simp3r 1198 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
58 uniiun 4984 . . . . . . . . . . . . . . . . . 18 𝑢 = 𝑣𝑢 𝑣
59 iuneq2 4940 . . . . . . . . . . . . . . . . . 18 (∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))) → 𝑣𝑢 𝑣 = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
6058, 59syl5eq 2870 . . . . . . . . . . . . . . . . 17 (∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))) → 𝑢 = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
6157, 60syl 17 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑢 = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
62 simp2r 1196 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑢 = 𝑋)
6356, 61, 623eqtr2rd 2865 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑋 = 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
64 iuneq1 4937 . . . . . . . . . . . . . . . 16 (𝑡 = ran 𝑚 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
6564rspceeqv 3640 . . . . . . . . . . . . . . 15 ((ran 𝑚 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑋 = 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
6649, 63, 65syl2anc 586 . . . . . . . . . . . . . 14 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
67663expia 1117 . . . . . . . . . . . . 13 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋)) → ((𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
6867adantrrr 723 . . . . . . . . . . . 12 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ((𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
6968exlimdv 1934 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → (∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7030, 69mpd 15 . . . . . . . . . 10 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
7170rexlimdvaa 3287 . . . . . . . . 9 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → (∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7225, 71syld 47 . . . . . . . 8 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7372ralrimdva 3191 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑛 ∈ ℕ0𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7439pwex 5283 . . . . . . . . 9 𝒫 𝐽 ∈ V
7574inex1 5223 . . . . . . . 8 (𝒫 𝐽 ∩ Fin) ∈ V
76 nn0ennn 13350 . . . . . . . . 9 0 ≈ ℕ
77 nnenom 13351 . . . . . . . . 9 ℕ ≈ ω
7876, 77entri 8565 . . . . . . . 8 0 ≈ ω
79 iuneq1 4937 . . . . . . . . 9 (𝑡 = (𝑚𝑛) → 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
8079eqeq2d 2834 . . . . . . . 8 (𝑡 = (𝑚𝑛) → (𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
8175, 78, 80axcc4 9863 . . . . . . 7 (∀𝑛 ∈ ℕ0𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) → ∃𝑚(𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
8273, 81syl6 35 . . . . . 6 (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑚(𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
83 elpwi 4550 . . . . . . . . . 10 (𝑟 ∈ 𝒫 𝐽𝑟𝐽)
84 eqid 2823 . . . . . . . . . . . 12 {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣} = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣}
85 eqid 2823 . . . . . . . . . . . 12 {⟨𝑡, 𝑘⟩ ∣ (𝑘 ∈ ℕ0𝑡 ∈ (𝑚𝑘) ∧ (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘) ∈ {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣})} = {⟨𝑡, 𝑘⟩ ∣ (𝑘 ∈ ℕ0𝑡 ∈ (𝑚𝑘) ∧ (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘) ∈ {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣})}
86 eqid 2823 . . . . . . . . . . . 12 (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
87 simpl 485 . . . . . . . . . . . 12 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → 𝐷 ∈ (CMet‘𝑋))
8834pweqd 4560 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (CMet‘𝑋) → 𝒫 𝑋 = 𝒫 𝐽)
8988ineq1d 4190 . . . . . . . . . . . . . . 15 (𝐷 ∈ (CMet‘𝑋) → (𝒫 𝑋 ∩ Fin) = (𝒫 𝐽 ∩ Fin))
9089feq3d 6503 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → (𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin) ↔ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)))
9190biimpar 480 . . . . . . . . . . . . 13 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) → 𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin))
9291adantrr 715 . . . . . . . . . . . 12 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin))
93 oveq1 7165 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑦 → (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛))
9493cbviunv 4967 . . . . . . . . . . . . . . . . . 18 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑦 ∈ (𝑚𝑛)(𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)
95 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) → 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin))
96 inss1 4207 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝒫 𝐽 ∩ Fin) ⊆ 𝒫 𝐽
9796, 88sseqtrrid 4022 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 ∈ (CMet‘𝑋) → (𝒫 𝐽 ∩ Fin) ⊆ 𝒫 𝑋)
98 fss 6529 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ (𝒫 𝐽 ∩ Fin) ⊆ 𝒫 𝑋) → 𝑚:ℕ0⟶𝒫 𝑋)
9995, 97, 98syl2anr 598 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) → 𝑚:ℕ0⟶𝒫 𝑋)
10099ffvelrnda 6853 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑚𝑛) ∈ 𝒫 𝑋)
101100elpwid 4552 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑚𝑛) ⊆ 𝑋)
102101sselda 3969 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑦 ∈ (𝑚𝑛)) → 𝑦𝑋)
103 simplr 767 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑦 ∈ (𝑚𝑛)) → 𝑛 ∈ ℕ0)
104 oveq1 7165 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = (𝑦(ball‘𝐷)(1 / (2↑𝑚))))
105 oveq2 7166 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛))
106105oveq2d 7174 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (1 / (2↑𝑚)) = (1 / (2↑𝑛)))
107106oveq2d 7174 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (𝑦(ball‘𝐷)(1 / (2↑𝑚))) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
108 ovex 7191 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ∈ V
109104, 107, 86, 108ovmpo 7312 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑋𝑛 ∈ ℕ0) → (𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
110102, 103, 109syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑦 ∈ (𝑚𝑛)) → (𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
111110iuneq2dv 4945 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → 𝑦 ∈ (𝑚𝑛)(𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
11294, 111syl5eq 2870 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
113112eqeq2d 2834 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
114113biimprd 250 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))) → 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)))
115114ralimdva 3179 . . . . . . . . . . . . . 14 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) → (∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)))
116115impr 457 . . . . . . . . . . . . 13 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛))
117 fveq2 6672 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑚𝑛) = (𝑚𝑘))
118117iuneq1d 4948 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛))
119 simpl 485 . . . . . . . . . . . . . . . . . 18 ((𝑛 = 𝑘𝑡 ∈ (𝑚𝑘)) → 𝑛 = 𝑘)
120119oveq2d 7174 . . . . . . . . . . . . . . . . 17 ((𝑛 = 𝑘𝑡 ∈ (𝑚𝑘)) → (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
121120iuneq2dv 4945 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
122118, 121eqtrd 2858 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
123122eqeq2d 2834 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ 𝑋 = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘)))
124123cbvralvw 3451 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ ∀𝑘 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
125116, 124sylib 220 . . . . . . . . . . . 12 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑘 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
1261, 84, 85, 86, 87, 92, 125heiborlem10 35100 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) ∧ (𝑟𝐽 𝐽 = 𝑟)) → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)
127126exp32 423 . . . . . . . . . 10 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → (𝑟𝐽 → ( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
12883, 127syl5 34 . . . . . . . . 9 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → (𝑟 ∈ 𝒫 𝐽 → ( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
129128ralrimiv 3183 . . . . . . . 8 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣))
130129ex 415 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → ((𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
131130exlimdv 1934 . . . . . 6 (𝐷 ∈ (CMet‘𝑋) → (∃𝑚(𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
13282, 131syld 47 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
133132imp 409 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣))
134 eqid 2823 . . . . 5 𝐽 = 𝐽
135134iscmp 21998 . . . 4 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
1368, 133, 135sylanbrc 585 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐽 ∈ Comp)
1374, 136jca 514 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp))
1382, 137impbii 211 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ↔ (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2801  wral 3140  wrex 3141  cin 3937  wss 3938  𝒫 cpw 4541   cuni 4840   ciun 4921  {copab 5130  ran crn 5558   Fn wfn 6352  wf 6353  ontowfo 6355  cfv 6357  (class class class)co 7158  cmpo 7160  ωcom 7582  Fincfn 8511  1c1 10540   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  +crp 12392  cexp 13432  ∞Metcxmet 20532  Metcmet 20533  ballcbl 20534  MetOpencmopn 20537  Topctop 21503  Compccmp 21996  CMetccmet 23859  TotBndctotbnd 35046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-icc 12748  df-fz 12896  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-rest 16698  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lm 21839  df-haus 21925  df-cmp 21997  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-cfil 23860  df-cau 23861  df-cmet 23862  df-totbnd 35048
This theorem is referenced by:  rrnheibor  35117
  Copyright terms: Public domain W3C validator