Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem1 Structured version   Visualization version   GIF version

Theorem heiborlem1 32576
Description: Lemma for heibor 32586. We work with a fixed open cover 𝑈 throughout. The set 𝐾 is the set of all subsets of 𝑋 that admit no finite subcover of 𝑈. (We wish to prove that 𝐾 is empty.) If a set 𝐶 has no finite subcover, then any finite cover of 𝐶 must contain a set that also has no finite subcover. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heiborlem1.4 𝐵 ∈ V
Assertion
Ref Expression
heiborlem1 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵𝐶𝐾) → ∃𝑥𝐴 𝐵𝐾)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑢,𝑣,𝐷   𝑢,𝐵,𝑣   𝑢,𝐽,𝑣,𝑥   𝑢,𝑈,𝑣,𝑥   𝑢,𝐶,𝑣   𝑥,𝐾
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐵(𝑥)   𝐶(𝑥)   𝐾(𝑣,𝑢)

Proof of Theorem heiborlem1
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 heiborlem1.4 . . . . . . . 8 𝐵 ∈ V
2 sseq1 3588 . . . . . . . . . 10 (𝑢 = 𝐵 → (𝑢 𝑣𝐵 𝑣))
32rexbidv 3033 . . . . . . . . 9 (𝑢 = 𝐵 → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣))
43notbid 306 . . . . . . . 8 (𝑢 = 𝐵 → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣))
5 heibor.3 . . . . . . . 8 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
61, 4, 5elab2 3322 . . . . . . 7 (𝐵𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣)
76con2bii 345 . . . . . 6 (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 ↔ ¬ 𝐵𝐾)
87ralbii 2962 . . . . 5 (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 ↔ ∀𝑥𝐴 ¬ 𝐵𝐾)
9 ralnex 2974 . . . . 5 (∀𝑥𝐴 ¬ 𝐵𝐾 ↔ ¬ ∃𝑥𝐴 𝐵𝐾)
108, 9bitr2i 263 . . . 4 (¬ ∃𝑥𝐴 𝐵𝐾 ↔ ∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣)
11 unieq 4374 . . . . . . . . 9 (𝑣 = (𝑡𝑥) → 𝑣 = (𝑡𝑥))
1211sseq2d 3595 . . . . . . . 8 (𝑣 = (𝑡𝑥) → (𝐵 𝑣𝐵 (𝑡𝑥)))
1312ac6sfi 8066 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣) → ∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥)))
1413ex 448 . . . . . 6 (𝐴 ∈ Fin → (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 → ∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))))
1514adantr 479 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 → ∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))))
16 sseq1 3588 . . . . . . . . . . . 12 (𝑢 = 𝐶 → (𝑢 𝑣𝐶 𝑣))
1716rexbidv 3033 . . . . . . . . . . 11 (𝑢 = 𝐶 → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣))
1817notbid 306 . . . . . . . . . 10 (𝑢 = 𝐶 → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣))
1918, 5elab2g 3321 . . . . . . . . 9 (𝐶𝐾 → (𝐶𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣))
2019ibi 254 . . . . . . . 8 (𝐶𝐾 → ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣)
21 frn 5952 . . . . . . . . . . . . . . 15 (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) → ran 𝑡 ⊆ (𝒫 𝑈 ∩ Fin))
2221ad2antrl 759 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ⊆ (𝒫 𝑈 ∩ Fin))
23 inss1 3794 . . . . . . . . . . . . . 14 (𝒫 𝑈 ∩ Fin) ⊆ 𝒫 𝑈
2422, 23syl6ss 3579 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ⊆ 𝒫 𝑈)
25 sspwuni 4541 . . . . . . . . . . . . 13 (ran 𝑡 ⊆ 𝒫 𝑈 ran 𝑡𝑈)
2624, 25sylib 206 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡𝑈)
27 vex 3175 . . . . . . . . . . . . . . 15 𝑡 ∈ V
2827rnex 6969 . . . . . . . . . . . . . 14 ran 𝑡 ∈ V
2928uniex 6828 . . . . . . . . . . . . 13 ran 𝑡 ∈ V
3029elpw 4113 . . . . . . . . . . . 12 ( ran 𝑡 ∈ 𝒫 𝑈 ran 𝑡𝑈)
3126, 30sylibr 222 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ 𝒫 𝑈)
32 ffn 5944 . . . . . . . . . . . . . . 15 (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) → 𝑡 Fn 𝐴)
3332ad2antrl 759 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑡 Fn 𝐴)
34 dffn4 6019 . . . . . . . . . . . . . 14 (𝑡 Fn 𝐴𝑡:𝐴onto→ran 𝑡)
3533, 34sylib 206 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑡:𝐴onto→ran 𝑡)
36 fofi 8112 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑡:𝐴onto→ran 𝑡) → ran 𝑡 ∈ Fin)
3735, 36syldan 485 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ Fin)
38 inss2 3795 . . . . . . . . . . . . 13 (𝒫 𝑈 ∩ Fin) ⊆ Fin
3922, 38syl6ss 3579 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ⊆ Fin)
40 unifi 8115 . . . . . . . . . . . 12 ((ran 𝑡 ∈ Fin ∧ ran 𝑡 ⊆ Fin) → ran 𝑡 ∈ Fin)
4137, 39, 40syl2anc 690 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ Fin)
4231, 41elind 3759 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ (𝒫 𝑈 ∩ Fin))
4342adantlr 746 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ (𝒫 𝑈 ∩ Fin))
44 simplr 787 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝐶 𝑥𝐴 𝐵)
45 fnfvelrn 6249 . . . . . . . . . . . . . . . . . 18 ((𝑡 Fn 𝐴𝑥𝐴) → (𝑡𝑥) ∈ ran 𝑡)
4632, 45sylan 486 . . . . . . . . . . . . . . . . 17 ((𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ 𝑥𝐴) → (𝑡𝑥) ∈ ran 𝑡)
4746adantll 745 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) ∧ 𝑥𝐴) → (𝑡𝑥) ∈ ran 𝑡)
48 elssuni 4397 . . . . . . . . . . . . . . . 16 ((𝑡𝑥) ∈ ran 𝑡 → (𝑡𝑥) ⊆ ran 𝑡)
49 uniss 4388 . . . . . . . . . . . . . . . 16 ((𝑡𝑥) ⊆ ran 𝑡 (𝑡𝑥) ⊆ ran 𝑡)
5047, 48, 493syl 18 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) ∧ 𝑥𝐴) → (𝑡𝑥) ⊆ ran 𝑡)
51 sstr2 3574 . . . . . . . . . . . . . . 15 (𝐵 (𝑡𝑥) → ( (𝑡𝑥) ⊆ ran 𝑡𝐵 ran 𝑡))
5250, 51syl5com 31 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) ∧ 𝑥𝐴) → (𝐵 (𝑡𝑥) → 𝐵 ran 𝑡))
5352ralimdva 2944 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) → (∀𝑥𝐴 𝐵 (𝑡𝑥) → ∀𝑥𝐴 𝐵 ran 𝑡))
5453impr 646 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ∀𝑥𝐴 𝐵 ran 𝑡)
55 iunss 4491 . . . . . . . . . . . 12 ( 𝑥𝐴 𝐵 ran 𝑡 ↔ ∀𝑥𝐴 𝐵 ran 𝑡)
5654, 55sylibr 222 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑥𝐴 𝐵 ran 𝑡)
5756adantlr 746 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑥𝐴 𝐵 ran 𝑡)
5844, 57sstrd 3577 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝐶 ran 𝑡)
59 unieq 4374 . . . . . . . . . . 11 (𝑣 = ran 𝑡 𝑣 = ran 𝑡)
6059sseq2d 3595 . . . . . . . . . 10 (𝑣 = ran 𝑡 → (𝐶 𝑣𝐶 ran 𝑡))
6160rspcev 3281 . . . . . . . . 9 (( ran 𝑡 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐶 ran 𝑡) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣)
6243, 58, 61syl2anc 690 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣)
6320, 62nsyl3 131 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ¬ 𝐶𝐾)
6463ex 448 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → ((𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥)) → ¬ 𝐶𝐾))
6564exlimdv 1847 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥)) → ¬ 𝐶𝐾))
6615, 65syld 45 . . . 4 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 → ¬ 𝐶𝐾))
6710, 66syl5bi 230 . . 3 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (¬ ∃𝑥𝐴 𝐵𝐾 → ¬ 𝐶𝐾))
6867con4d 112 . 2 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (𝐶𝐾 → ∃𝑥𝐴 𝐵𝐾))
69683impia 1252 1 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵𝐶𝐾) → ∃𝑥𝐴 𝐵𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wex 1694  wcel 1976  {cab 2595  wral 2895  wrex 2896  Vcvv 3172  cin 3538  wss 3539  𝒫 cpw 4107   cuni 4366   ciun 4449  ran crn 5029   Fn wfn 5785  wf 5786  ontowfo 5788  cfv 5790  Fincfn 7818  MetOpencmopn 19503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-fin 7822
This theorem is referenced by:  heiborlem3  32578  heiborlem10  32585
  Copyright terms: Public domain W3C validator