Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem5 Structured version   Visualization version   GIF version

Theorem heiborlem5 33232
Description: Lemma for heibor 33238. The function 𝑀 is a set of point-and-radius pairs suitable for application to caubl 23009. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem5 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑚,𝑀,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem5
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11244 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 inss1 3816 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
3 heibor.7 . . . . . . . . . 10 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
43ffvelrnda 6316 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ (𝒫 𝑋 ∩ Fin))
52, 4sseldi 3586 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝒫 𝑋)
65elpwid 4146 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ⊆ 𝑋)
7 heibor.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
8 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
9 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
10 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
11 heibor.6 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
12 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
13 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
14 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
15 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
167, 8, 9, 10, 11, 3, 12, 13, 14, 15heiborlem4 33231 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘)𝐺𝑘)
17 fvex 6160 . . . . . . . . . 10 (𝑆𝑘) ∈ V
18 vex 3194 . . . . . . . . . 10 𝑘 ∈ V
197, 8, 9, 17, 18heiborlem2 33229 . . . . . . . . 9 ((𝑆𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆𝑘) ∈ (𝐹𝑘) ∧ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
2019simp2bi 1075 . . . . . . . 8 ((𝑆𝑘)𝐺𝑘 → (𝑆𝑘) ∈ (𝐹𝑘))
2116, 20syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ (𝐹𝑘))
226, 21sseldd 3589 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ 𝑋)
231, 22sylan2 491 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ 𝑋)
2423ralrimiva 2965 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ∈ 𝑋)
25 fveq2 6150 . . . . . 6 (𝑘 = 𝑛 → (𝑆𝑘) = (𝑆𝑛))
2625eleq1d 2688 . . . . 5 (𝑘 = 𝑛 → ((𝑆𝑘) ∈ 𝑋 ↔ (𝑆𝑛) ∈ 𝑋))
2726cbvralv 3164 . . . 4 (∀𝑘 ∈ ℕ (𝑆𝑘) ∈ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋)
2824, 27sylib 208 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋)
29 3re 11039 . . . . . . 7 3 ∈ ℝ
30 3pos 11059 . . . . . . 7 0 < 3
3129, 30elrpii 11779 . . . . . 6 3 ∈ ℝ+
32 2nn 11130 . . . . . . . 8 2 ∈ ℕ
33 nnnn0 11244 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
34 nnexpcl 12810 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
3532, 33, 34sylancr 694 . . . . . . 7 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
3635nnrpd 11814 . . . . . 6 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
37 rpdivcl 11800 . . . . . 6 ((3 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (3 / (2↑𝑛)) ∈ ℝ+)
3831, 36, 37sylancr 694 . . . . 5 (𝑛 ∈ ℕ → (3 / (2↑𝑛)) ∈ ℝ+)
39 opelxpi 5113 . . . . . 6 (((𝑆𝑛) ∈ 𝑋 ∧ (3 / (2↑𝑛)) ∈ ℝ+) → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
4039expcom 451 . . . . 5 ((3 / (2↑𝑛)) ∈ ℝ+ → ((𝑆𝑛) ∈ 𝑋 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+)))
4138, 40syl 17 . . . 4 (𝑛 ∈ ℕ → ((𝑆𝑛) ∈ 𝑋 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+)))
4241ralimia 2950 . . 3 (∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋 → ∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
4328, 42syl 17 . 2 (𝜑 → ∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
44 heibor.12 . . 3 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
4544fmpt 6338 . 2 (∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+) ↔ 𝑀:ℕ⟶(𝑋 × ℝ+))
4643, 45sylib 208 1 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  {cab 2612  wral 2912  wrex 2913  cin 3559  wss 3560  ifcif 4063  𝒫 cpw 4135  cop 4159   cuni 4407   ciun 4490   class class class wbr 4618  {copab 4677  cmpt 4678   × cxp 5077  wf 5846  cfv 5850  (class class class)co 6605  cmpt2 6607  2nd c2nd 7115  Fincfn 7900  0cc0 9881  1c1 9882   + caddc 9884  cmin 10211   / cdiv 10629  cn 10965  2c2 11015  3c3 11016  0cn0 11237  +crp 11776  seqcseq 12738  cexp 12797  ballcbl 19647  MetOpencmopn 19650  CMetcms 22955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-seq 12739  df-exp 12798
This theorem is referenced by:  heiborlem8  33235  heiborlem9  33236
  Copyright terms: Public domain W3C validator