Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem7 Structured version   Visualization version   GIF version

Theorem heiborlem7 35097
Description: Lemma for heibor 35101. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem7 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
Distinct variable groups:   𝑥,𝑛,𝑦,𝑘,𝑟,𝑢,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑟,𝑥   𝑘,𝑚,𝑣,𝑧,𝐷,𝑛,𝑟,𝑢,𝑥,𝑦   𝑘,𝑀,𝑚,𝑟,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑘,𝐽,𝑚,𝑛,𝑟,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝑋,𝑚,𝑛,𝑟,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑘,𝑚,𝑟)   𝐶(𝑥,𝑧,𝑘,𝑟)   𝑆(𝑟)   𝑇(𝑣,𝑢,𝑘,𝑟)   𝑈(𝑘,𝑚,𝑟)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛,𝑟)   𝐾(𝑣,𝑢,𝑘,𝑚,𝑟)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem7
StepHypRef Expression
1 3re 11720 . . . . . . 7 3 ∈ ℝ
2 3pos 11745 . . . . . . 7 0 < 3
31, 2elrpii 12395 . . . . . 6 3 ∈ ℝ+
4 rpdivcl 12417 . . . . . 6 ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑟 / 3) ∈ ℝ+)
53, 4mpan2 689 . . . . 5 (𝑟 ∈ ℝ+ → (𝑟 / 3) ∈ ℝ+)
6 2re 11714 . . . . . 6 2 ∈ ℝ
7 1lt2 11811 . . . . . 6 1 < 2
8 expnlbnd 13597 . . . . . 6 (((𝑟 / 3) ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
96, 7, 8mp3an23 1449 . . . . 5 ((𝑟 / 3) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
105, 9syl 17 . . . 4 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
11 2nn 11713 . . . . . . . . . . 11 2 ∈ ℕ
12 nnnn0 11907 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
13 nnexpcl 13445 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
1411, 12, 13sylancr 589 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℕ)
1514nnrpd 12432 . . . . . . . . 9 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℝ+)
16 rpcn 12402 . . . . . . . . . 10 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ)
17 rpne0 12408 . . . . . . . . . 10 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0)
18 3cn 11721 . . . . . . . . . . 11 3 ∈ ℂ
19 divrec 11316 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2018, 19mp3an1 1444 . . . . . . . . . 10 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2116, 17, 20syl2anc 586 . . . . . . . . 9 ((2↑𝑘) ∈ ℝ+ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2215, 21syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2322adantl 484 . . . . . . 7 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2423breq1d 5078 . . . . . 6 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (3 · (1 / (2↑𝑘))) < 𝑟))
2514nnrecred 11691 . . . . . . 7 (𝑘 ∈ ℕ → (1 / (2↑𝑘)) ∈ ℝ)
26 rpre 12400 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
271, 2pm3.2i 473 . . . . . . . 8 (3 ∈ ℝ ∧ 0 < 3)
28 ltmuldiv2 11516 . . . . . . . 8 (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
2927, 28mp3an3 1446 . . . . . . 7 (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3025, 26, 29syl2anr 598 . . . . . 6 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3124, 30bitrd 281 . . . . 5 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3231rexbidva 3298 . . . 4 (𝑟 ∈ ℝ+ → (∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)))
3310, 32mpbird 259 . . 3 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟)
34 fveq2 6672 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
35 oveq2 7166 . . . . . . . . . 10 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
3635oveq2d 7174 . . . . . . . . 9 (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘)))
3734, 36opeq12d 4813 . . . . . . . 8 (𝑛 = 𝑘 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
38 heibor.12 . . . . . . . 8 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
39 opex 5358 . . . . . . . 8 ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩ ∈ V
4037, 38, 39fvmpt 6770 . . . . . . 7 (𝑘 ∈ ℕ → (𝑀𝑘) = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
4140fveq2d 6676 . . . . . 6 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩))
42 fvex 6685 . . . . . . 7 (𝑆𝑘) ∈ V
43 ovex 7191 . . . . . . 7 (3 / (2↑𝑘)) ∈ V
4442, 43op2nd 7700 . . . . . 6 (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩) = (3 / (2↑𝑘))
4541, 44syl6eq 2874 . . . . 5 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (3 / (2↑𝑘)))
4645breq1d 5078 . . . 4 (𝑘 ∈ ℕ → ((2nd ‘(𝑀𝑘)) < 𝑟 ↔ (3 / (2↑𝑘)) < 𝑟))
4746rexbiia 3248 . . 3 (∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟)
4833, 47sylibr 236 . 2 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟)
4948rgen 3150 1 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  cin 3937  wss 3938  ifcif 4469  𝒫 cpw 4541  cop 4575   cuni 4840   ciun 4921   class class class wbr 5068  {copab 5130  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  2nd c2nd 7690  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  3c3 11696  0cn0 11900  +crp 12392  seqcseq 13372  cexp 13432  ballcbl 20534  MetOpencmopn 20537  CMetccmet 23859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-seq 13373  df-exp 13433
This theorem is referenced by:  heiborlem8  35098  heiborlem9  35099
  Copyright terms: Public domain W3C validator