HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  helch Structured version   Visualization version   GIF version

Theorem helch 27278
Description: The unit Hilbert lattice element (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 6-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
helch ℋ ∈ C

Proof of Theorem helch
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3587 . . . 4 ℋ ⊆ ℋ
2 ax-hv0cl 27038 . . . 4 0 ∈ ℋ
31, 2pm3.2i 470 . . 3 ( ℋ ⊆ ℋ ∧ 0 ∈ ℋ)
4 hvaddcl 27047 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
54rgen2a 2960 . . . 4 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 + 𝑦) ∈ ℋ
6 hvmulcl 27048 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
76rgen2 2958 . . . 4 𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 · 𝑦) ∈ ℋ
85, 7pm3.2i 470 . . 3 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 + 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 · 𝑦) ∈ ℋ)
9 issh2 27244 . . 3 ( ℋ ∈ S ↔ (( ℋ ⊆ ℋ ∧ 0 ∈ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 + 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 · 𝑦) ∈ ℋ)))
103, 8, 9mpbir2an 957 . 2 ℋ ∈ S
11 vex 3176 . . . . 5 𝑥 ∈ V
1211hlimveci 27225 . . . 4 (𝑓𝑣 𝑥𝑥 ∈ ℋ)
1312adantl 481 . . 3 ((𝑓:ℕ⟶ ℋ ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
1413gen2 1714 . 2 𝑓𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
15 isch2 27258 . 2 ( ℋ ∈ C ↔ ( ℋ ∈ S ∧ ∀𝑓𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)))
1610, 14, 15mpbir2an 957 1 ℋ ∈ C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473  wcel 1977  wral 2896  wss 3540   class class class wbr 4578  wf 5786  (class class class)co 6527  cc 9791  cn 10870  chil 26954   + cva 26955   · csm 26956  0c0v 26959  𝑣 chli 26962   S csh 26963   C cch 26964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-i2m1 9861  ax-1ne0 9862  ax-rrecex 9865  ax-cnre 9866  ax-hilex 27034  ax-hfvadd 27035  ax-hv0cl 27038  ax-hfvmul 27040
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-map 7724  df-nn 10871  df-hlim 27007  df-sh 27242  df-ch 27256
This theorem is referenced by:  ifchhv  27279  helsh  27280  ococin  27445  chj1i  27526  hne0  27584  pjch1  27707  pjo  27708  pjsslem  27716  ho0val  27787  dfiop2  27790  hoid1i  27826  hoid1ri  27827  pjtoi  28216  pjoci  28217  pjclem3  28234  hst0  28270  st0  28286  strlem3a  28289  hstrlem3a  28297  stcltr2i  28312
  Copyright terms: Public domain W3C validator