Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapfnN Structured version   Visualization version   GIF version

Theorem hgmapfnN 35996
Description: Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hgmapfn.h 𝐻 = (LHyp‘𝐾)
hgmapfn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapfn.r 𝑅 = (Scalar‘𝑈)
hgmapfn.b 𝐵 = (Base‘𝑅)
hgmapfn.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hgmapfn.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hgmapfnN (𝜑𝐺 Fn 𝐵)

Proof of Theorem hgmapfnN
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 6488 . . 3 (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) ∈ V
2 eqid 2604 . . 3 (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) = (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))))
31, 2fnmpti 5916 . 2 (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵
4 hgmapfn.h . . . 4 𝐻 = (LHyp‘𝐾)
5 hgmapfn.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 eqid 2604 . . . 4 (Base‘𝑈) = (Base‘𝑈)
7 eqid 2604 . . . 4 ( ·𝑠𝑈) = ( ·𝑠𝑈)
8 hgmapfn.r . . . 4 𝑅 = (Scalar‘𝑈)
9 hgmapfn.b . . . 4 𝐵 = (Base‘𝑅)
10 eqid 2604 . . . 4 ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊)
11 eqid 2604 . . . 4 ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))
12 eqid 2604 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
13 hgmapfn.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
14 hgmapfn.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
154, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hgmapfval 35994 . . 3 (𝜑𝐺 = (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))))
1615fneq1d 5876 . 2 (𝜑 → (𝐺 Fn 𝐵 ↔ (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵))
173, 16mpbiri 246 1 (𝜑𝐺 Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  wral 2890  cmpt 4632   Fn wfn 5780  cfv 5785  crio 6483  (class class class)co 6522  Basecbs 15636  Scalarcsca 15712   ·𝑠 cvsca 15713  HLchlt 33453  LHypclh 34086  DVecHcdvh 35183  LCDualclcd 35691  HDMapchdma 35898  HGMapchg 35991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pr 4823
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-ral 2895  df-rex 2896  df-reu 2897  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-nul 3869  df-if 4031  df-sn 4120  df-pr 4122  df-op 4126  df-uni 4362  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-id 4938  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-hgmap 35992
This theorem is referenced by:  hgmaprnlem1N  36004  hgmaprnN  36009  hgmapf1oN  36011
  Copyright terms: Public domain W3C validator