Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lema Structured version   Visualization version   GIF version

Theorem hgt750lema 31932
Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750leme.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt750leme.n (𝜑𝑁 ∈ ℕ)
hgt750lemb.2 (𝜑 → 2 ≤ 𝑁)
hgt750lemb.a 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
hgt750lema.f 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
Assertion
Ref Expression
hgt750lema (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Distinct variable groups:   𝑧,𝑂   𝐴,𝑐,𝑑,𝑛   𝑁,𝑐,𝑛   𝜑,𝑐,𝑛   𝑛,𝐹   𝑁,𝑎,𝑑,𝑐,𝑛   𝑂,𝑎,𝑐,𝑑,𝑛   𝜑,𝑎,𝑑
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧,𝑎)   𝐹(𝑧,𝑎,𝑐,𝑑)   𝑁(𝑧)

Proof of Theorem hgt750lema
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 fzofi 13345 . . . 4 (0..^3) ∈ Fin
21a1i 11 . . 3 (𝜑 → (0..^3) ∈ Fin)
3 hgt750leme.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
43nnnn0d 11958 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5 3nn0 11918 . . . . . . 7 3 ∈ ℕ0
65a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
7 ssidd 3993 . . . . . 6 (𝜑 → ℕ ⊆ ℕ)
84, 6, 7reprfi2 31898 . . . . 5 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
9 ssrab2 4059 . . . . . 6 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
109a1i 11 . . . . 5 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
118, 10ssfid 8744 . . . 4 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
1211adantr 483 . . 3 ((𝜑𝑎 ∈ (0..^3)) → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
13 vmaf 25699 . . . . . 6 Λ:ℕ⟶ℝ
1413a1i 11 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
15 ssidd 3993 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
164nn0zd 12088 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1716ad2antrr 724 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
185a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
19 simpr 487 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)})
209, 19sseldi 3968 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
2115, 17, 18, 20reprf 31887 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
22 c0ex 10638 . . . . . . . . 9 0 ∈ V
2322tpid1 4707 . . . . . . . 8 0 ∈ {0, 1, 2}
24 fzo0to3tp 13126 . . . . . . . 8 (0..^3) = {0, 1, 2}
2523, 24eleqtrri 2915 . . . . . . 7 0 ∈ (0..^3)
2625a1i 11 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
2721, 26ffvelrnd 6855 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
2814, 27ffvelrnd 6855 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
29 1ex 10640 . . . . . . . . . 10 1 ∈ V
3029tpid2 4709 . . . . . . . . 9 1 ∈ {0, 1, 2}
3130, 24eleqtrri 2915 . . . . . . . 8 1 ∈ (0..^3)
3231a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
3321, 32ffvelrnd 6855 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
3414, 33ffvelrnd 6855 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
35 2ex 11717 . . . . . . . . . 10 2 ∈ V
3635tpid3 4712 . . . . . . . . 9 2 ∈ {0, 1, 2}
3736, 24eleqtrri 2915 . . . . . . . 8 2 ∈ (0..^3)
3837a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
3921, 38ffvelrnd 6855 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
4014, 39ffvelrnd 6855 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
4134, 40remulcld 10674 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
4228, 41remulcld 10674 . . 3 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
43 vmage0 25701 . . . . 5 ((𝑛‘0) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘0)))
4427, 43syl 17 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘0)))
45 vmage0 25701 . . . . . 6 ((𝑛‘1) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘1)))
4633, 45syl 17 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘1)))
47 vmage0 25701 . . . . . 6 ((𝑛‘2) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘2)))
4839, 47syl 17 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘2)))
4934, 40, 46, 48mulge0d 11220 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))
5028, 41, 44, 49mulge0d 11220 . . 3 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
512, 12, 42, 50fsumiunle 30549 . 2 (𝜑 → Σ𝑛 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
52 eqid 2824 . . . 4 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}
53 inss2 4209 . . . . . 6 (𝑂 ∩ ℙ) ⊆ ℙ
54 prmssnn 16023 . . . . . 6 ℙ ⊆ ℕ
5553, 54sstri 3979 . . . . 5 (𝑂 ∩ ℙ) ⊆ ℕ
5655a1i 11 . . . 4 (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ)
5752, 7, 56, 4, 6reprdifc 31902 . . 3 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) = 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)})
5857sumeq1d 15061 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
59 ssrab2 4059 . . . . . . . 8 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
6059a1i 11 . . . . . . 7 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
618, 60ssfid 8744 . . . . . 6 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
6213a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
63 ssidd 3993 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
6416adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
655a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
6660sselda 3970 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
6763, 64, 65, 66reprf 31887 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
6825a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
6967, 68ffvelrnd 6855 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
7062, 69ffvelrnd 6855 . . . . . . 7 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
7131a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
7267, 71ffvelrnd 6855 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
7362, 72ffvelrnd 6855 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
7437a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
7567, 74ffvelrnd 6855 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
7662, 75ffvelrnd 6855 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
7773, 76remulcld 10674 . . . . . . 7 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
7870, 77remulcld 10674 . . . . . 6 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
7961, 78fsumrecl 15094 . . . . 5 (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
8079recnd 10672 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
81 fsumconst 15148 . . . 4 (((0..^3) ∈ Fin ∧ Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ) → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
822, 80, 81syl2anc 586 . . 3 (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
83 fveq1 6672 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (𝑛‘0) = ((𝐹𝑒)‘0))
8483fveq2d 6677 . . . . . . 7 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘0)) = (Λ‘((𝐹𝑒)‘0)))
85 fveq1 6672 . . . . . . . . 9 (𝑛 = (𝐹𝑒) → (𝑛‘1) = ((𝐹𝑒)‘1))
8685fveq2d 6677 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘1)) = (Λ‘((𝐹𝑒)‘1)))
87 fveq1 6672 . . . . . . . . 9 (𝑛 = (𝐹𝑒) → (𝑛‘2) = ((𝐹𝑒)‘2))
8887fveq2d 6677 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘2)) = (Λ‘((𝐹𝑒)‘2)))
8986, 88oveq12d 7177 . . . . . . 7 (𝑛 = (𝐹𝑒) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) = ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2))))
9084, 89oveq12d 7177 . . . . . 6 (𝑛 = (𝐹𝑒) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))))
91 3nn 11719 . . . . . . . . . 10 3 ∈ ℕ
9291a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℕ)
9392ralrimivw 3186 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ (0..^3)3 ∈ ℕ)
9493r19.21bi 3211 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 3 ∈ ℕ)
9516adantr 483 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 𝑁 ∈ ℤ)
96 ssidd 3993 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → ℕ ⊆ ℕ)
97 simpr 487 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 𝑎 ∈ (0..^3))
98 fveq1 6672 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐‘0) = (𝑑‘0))
9998eleq1d 2900 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ (𝑑‘0) ∈ (𝑂 ∩ ℙ)))
10099notbid 320 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)))
101100cbvrabv 3494 . . . . . . 7 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} = {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}
102 fveq1 6672 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐𝑎) = (𝑑𝑎))
103102eleq1d 2900 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐𝑎) ∈ (𝑂 ∩ ℙ) ↔ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)))
104103notbid 320 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)))
105104cbvrabv 3494 . . . . . . 7 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)}
106 eqid 2824 . . . . . . 7 if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})) = if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))
107 hgt750lema.f . . . . . . 7 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
10894, 95, 96, 97, 101, 105, 106, 107reprpmtf1o 31901 . . . . . 6 ((𝜑𝑎 ∈ (0..^3)) → 𝐹:{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}–1-1-onto→{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)})
109 eqidd 2825 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝐹𝑒) = (𝐹𝑒))
11078adantlr 713 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
111110recnd 10672 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
11290, 12, 108, 109, 111fsumf1o 15083 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))))
113 fveq2 6673 . . . . . . . . . 10 (𝑒 = 𝑛 → (𝐹𝑒) = (𝐹𝑛))
114113fveq1d 6675 . . . . . . . . 9 (𝑒 = 𝑛 → ((𝐹𝑒)‘0) = ((𝐹𝑛)‘0))
115114fveq2d 6677 . . . . . . . 8 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘0)) = (Λ‘((𝐹𝑛)‘0)))
116113fveq1d 6675 . . . . . . . . . 10 (𝑒 = 𝑛 → ((𝐹𝑒)‘1) = ((𝐹𝑛)‘1))
117116fveq2d 6677 . . . . . . . . 9 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘1)) = (Λ‘((𝐹𝑛)‘1)))
118113fveq1d 6675 . . . . . . . . . 10 (𝑒 = 𝑛 → ((𝐹𝑒)‘2) = ((𝐹𝑛)‘2))
119118fveq2d 6677 . . . . . . . . 9 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘2)) = (Λ‘((𝐹𝑛)‘2)))
120117, 119oveq12d 7177 . . . . . . . 8 (𝑒 = 𝑛 → ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2))) = ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2))))
121115, 120oveq12d 7177 . . . . . . 7 (𝑒 = 𝑛 → ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))))
122121cbvsumv 15056 . . . . . 6 Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2))))
123122a1i 11 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))))
124 ovexd 7194 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (0..^3) ∈ V)
12597adantr 483 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑎 ∈ (0..^3))
126124, 125, 26, 106pmtridf1o 30740 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})):(0..^3)–1-1-onto→(0..^3))
127107, 126, 21, 14, 19hgt750lemg 31929 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
128127sumeq2dv 15063 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
129112, 123, 1283eqtrrd 2864 . . . 4 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
130129sumeq2dv 15063 . . 3 (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
131 hashfzo0 13794 . . . . . . 7 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
1325, 131ax-mp 5 . . . . . 6 (♯‘(0..^3)) = 3
133132a1i 11 . . . . 5 (𝜑 → (♯‘(0..^3)) = 3)
134133eqcomd 2830 . . . 4 (𝜑 → 3 = (♯‘(0..^3)))
135 hgt750lemb.a . . . . . 6 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
136135a1i 11 . . . . 5 (𝜑𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)})
137136sumeq1d 15061 . . . 4 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
138134, 137oveq12d 7177 . . 3 (𝜑 → (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
13982, 130, 1383eqtr4rd 2870 . 2 (𝜑 → (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
14051, 58, 1393brtr4d 5101 1 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  {crab 3145  Vcvv 3497  cdif 3936  cin 3938  wss 3939  ifcif 4470  {cpr 4572  {ctp 4574   ciun 4922   class class class wbr 5069  cmpt 5149   I cid 5462  cres 5560  ccom 5562  wf 6354  cfv 6358  (class class class)co 7159  Fincfn 8512  cc 10538  cr 10539  0cc0 10540  1c1 10541   · cmul 10545  cle 10679  cn 11641  2c2 11695  3c3 11696  0cn0 11900  cz 11984  ..^cfzo 13036  chash 13693  Σcsu 15045  cdvds 15610  cprime 16018  pmTrspcpmtr 18572  Λcvma 25672  reprcrepr 31883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-reg 9059  ax-inf2 9107  ax-ac2 9888  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-r1 9196  df-rank 9197  df-dju 9333  df-card 9371  df-ac 9545  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-prod 15263  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-dvds 15611  df-gcd 15847  df-prm 16019  df-pc 16177  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-pmtr 18573  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468  df-log 25143  df-vma 25678  df-repr 31884
This theorem is referenced by:  hgt750leme  31933
  Copyright terms: Public domain W3C validator