HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcms Structured version   Visualization version   GIF version

Theorem hhcms 27232
Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcms.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhcms.2 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
hhcms 𝐷 ∈ (CMet‘ ℋ)

Proof of Theorem hhcms
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2514 . 2 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2 hhcms.1 . . 3 𝑈 = ⟨⟨ + , · ⟩, norm
3 hhcms.2 . . 3 𝐷 = (IndMet‘𝑈)
42, 3hhmet 27203 . 2 𝐷 ∈ (Met‘ ℋ)
52, 3hhcau 27227 . . . . . 6 Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ))
65eleq2i 2584 . . . . 5 (𝑓 ∈ Cauchy ↔ 𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)))
7 elin 3662 . . . . . 6 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑𝑚 ℕ)))
8 ax-hilex 27028 . . . . . . . 8 ℋ ∈ V
9 nnex 10781 . . . . . . . 8 ℕ ∈ V
108, 9elmap 7648 . . . . . . 7 (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶ ℋ)
1110anbi2i 725 . . . . . 6 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
127, 11bitri 262 . . . . 5 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
136, 12bitri 262 . . . 4 (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
14 ax-hcompl 27231 . . . 4 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
1513, 14sylbir 223 . . 3 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
162, 3, 1hhlm 27228 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑𝑚 ℕ))
1716breqi 4487 . . . . . 6 (𝑓𝑣 𝑥𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑𝑚 ℕ))𝑥)
18 vex 3080 . . . . . . 7 𝑥 ∈ V
1918brres 5214 . . . . . 6 (𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑𝑚 ℕ))𝑥 ↔ (𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥𝑓 ∈ ( ℋ ↑𝑚 ℕ)))
2017, 19bitri 262 . . . . 5 (𝑓𝑣 𝑥 ↔ (𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥𝑓 ∈ ( ℋ ↑𝑚 ℕ)))
21 vex 3080 . . . . . . 7 𝑓 ∈ V
2221, 18breldm 5142 . . . . . 6 (𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2322adantr 479 . . . . 5 ((𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥𝑓 ∈ ( ℋ ↑𝑚 ℕ)) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2420, 23sylbi 205 . . . 4 (𝑓𝑣 𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2524rexlimivw 2915 . . 3 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2615, 25syl 17 . 2 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
271, 4, 26iscmet3i 22781 1 𝐷 ∈ (CMet‘ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1474  wcel 1938  wrex 2801  cin 3443  cop 4034   class class class wbr 4481  dom cdm 4932  cres 4934  wf 5685  cfv 5689  (class class class)co 6426  𝑚 cmap 7620  cn 10775  MetOpencmopn 19461  𝑡clm 20743  Caucca 22723  CMetcms 22724  IndMetcims 26586  chil 26948   + cva 26949   · csm 26950  normcno 26952  Cauchyccau 26955  𝑣 chli 26956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-inf2 8297  ax-cc 9016  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768  ax-pre-sup 9769  ax-addf 9770  ax-mulf 9771  ax-hilex 27028  ax-hfvadd 27029  ax-hvcom 27030  ax-hvass 27031  ax-hv0cl 27032  ax-hvaddid 27033  ax-hfvmul 27034  ax-hvmulid 27035  ax-hvmulass 27036  ax-hvdistr1 27037  ax-hvdistr2 27038  ax-hvmul0 27039  ax-hfi 27108  ax-his1 27111  ax-his2 27112  ax-his3 27113  ax-his4 27114  ax-hcompl 27231
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-iin 4356  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-1st 6934  df-2nd 6935  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-1o 7323  df-oadd 7327  df-omul 7328  df-er 7505  df-map 7622  df-pm 7623  df-en 7718  df-dom 7719  df-sdom 7720  df-fin 7721  df-fi 8076  df-sup 8107  df-inf 8108  df-oi 8174  df-card 8524  df-acn 8527  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-2 10834  df-3 10835  df-4 10836  df-n0 11048  df-z 11119  df-uz 11428  df-q 11531  df-rp 11575  df-xneg 11688  df-xadd 11689  df-xmul 11690  df-ico 11921  df-fz 12066  df-fl 12323  df-seq 12532  df-exp 12591  df-cj 13546  df-re 13547  df-im 13548  df-sqrt 13682  df-abs 13683  df-clim 13933  df-rlim 13934  df-rest 15790  df-topgen 15811  df-psmet 19463  df-xmet 19464  df-met 19465  df-bl 19466  df-mopn 19467  df-fbas 19468  df-fg 19469  df-top 20424  df-bases 20425  df-topon 20426  df-ntr 20537  df-nei 20615  df-lm 20746  df-fil 21363  df-fm 21455  df-flim 21456  df-flf 21457  df-cfil 22725  df-cau 22726  df-cmet 22727  df-grpo 26469  df-gid 26470  df-ginv 26471  df-gdiv 26472  df-ablo 26524  df-vc 26539  df-nv 26587  df-va 26590  df-ba 26591  df-sm 26592  df-0v 26593  df-vs 26594  df-nmcv 26595  df-ims 26596  df-hnorm 26997  df-hvsub 27000  df-hlim 27001  df-hcau 27002
This theorem is referenced by:  hhhl  27233  hilcms  27234
  Copyright terms: Public domain W3C validator