HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcnf Structured version   Visualization version   GIF version

Theorem hhcnf 27942
Description: The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcn.1 𝐷 = (norm ∘ − )
hhcn.2 𝐽 = (MetOpen‘𝐷)
hhcn.4 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
hhcnf ConFn = (𝐽 Cn 𝐾)

Proof of Theorem hhcnf
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2905 . 2 {𝑡 ∈ (ℂ ↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)} = {𝑡 ∣ (𝑡 ∈ (ℂ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
2 df-cnfn 27884 . 2 ConFn = {𝑡 ∈ (ℂ ↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
3 hhcn.1 . . . . . . . . . . . . . 14 𝐷 = (norm ∘ − )
43hilmetdval 27231 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑥 𝑤)))
5 normsub 27178 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (norm‘(𝑥 𝑤)) = (norm‘(𝑤 𝑥)))
64, 5eqtrd 2644 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
76adantll 746 . . . . . . . . . . 11 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
87breq1d 4588 . . . . . . . . . 10 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥𝐷𝑤) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 𝑧))
9 ffvelrn 6250 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℂ)
10 ffvelrn 6250 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ℂ ∧ 𝑤 ∈ ℋ) → (𝑡𝑤) ∈ ℂ)
119, 10anim12dan 878 . . . . . . . . . . . . 13 ((𝑡: ℋ⟶ℂ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ))
12 eqid 2610 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
1312cnmetdval 22332 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑥) − (𝑡𝑤))))
14 abssub 13863 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → (abs‘((𝑡𝑥) − (𝑡𝑤))) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1513, 14eqtrd 2644 . . . . . . . . . . . . 13 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1611, 15syl 17 . . . . . . . . . . . 12 ((𝑡: ℋ⟶ℂ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1716anassrs 678 . . . . . . . . . . 11 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1817breq1d 4588 . . . . . . . . . 10 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦 ↔ (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))
198, 18imbi12d 333 . . . . . . . . 9 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2019ralbidva 2968 . . . . . . . 8 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2120rexbidv 3034 . . . . . . 7 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2221ralbidv 2969 . . . . . 6 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2322ralbidva 2968 . . . . 5 (𝑡: ℋ⟶ℂ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2423pm5.32i 667 . . . 4 ((𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
253hilxmet 27230 . . . . 5 𝐷 ∈ (∞Met‘ ℋ)
26 cnxmet 22334 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
27 hhcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
28 hhcn.4 . . . . . . 7 𝐾 = (TopOpen‘ℂfld)
2928cnfldtopn 22343 . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
3027, 29metcn 22106 . . . . 5 ((𝐷 ∈ (∞Met‘ ℋ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦))))
3125, 26, 30mp2an 704 . . . 4 (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦)))
32 cnex 9874 . . . . . 6 ℂ ∈ V
33 ax-hilex 27034 . . . . . 6 ℋ ∈ V
3432, 33elmap 7750 . . . . 5 (𝑡 ∈ (ℂ ↑𝑚 ℋ) ↔ 𝑡: ℋ⟶ℂ)
3534anbi1i 727 . . . 4 ((𝑡 ∈ (ℂ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3624, 31, 353bitr4i 291 . . 3 (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡 ∈ (ℂ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3736abbi2i 2725 . 2 (𝐽 Cn 𝐾) = {𝑡 ∣ (𝑡 ∈ (ℂ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
381, 2, 373eqtr4i 2642 1 ConFn = (𝐽 Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  {crab 2900   class class class wbr 4578  ccom 5032  wf 5786  cfv 5790  (class class class)co 6527  𝑚 cmap 7722  cc 9791   < clt 9931  cmin 10118  +crp 11667  abscabs 13771  TopOpenctopn 15854  ∞Metcxmt 19501  MetOpencmopn 19506  fldccnfld 19516   Cn ccn 20786  chil 26954  normcno 26958   cmv 26960  ConFnccnfn 26988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873  ax-hilex 27034  ax-hfvadd 27035  ax-hvcom 27036  ax-hvass 27037  ax-hv0cl 27038  ax-hvaddid 27039  ax-hfvmul 27040  ax-hvmulid 27041  ax-hvmulass 27042  ax-hvdistr1 27043  ax-hvdistr2 27044  ax-hvmul0 27045  ax-hfi 27114  ax-his1 27117  ax-his2 27118  ax-his3 27119  ax-his4 27120
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-inf 8210  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-fz 12156  df-seq 12622  df-exp 12681  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-plusg 15730  df-mulr 15731  df-starv 15732  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-rest 15855  df-topn 15856  df-topgen 15876  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-cn 20789  df-cnp 20790  df-grpo 26525  df-gid 26526  df-ginv 26527  df-gdiv 26528  df-ablo 26577  df-vc 26592  df-nv 26625  df-va 26628  df-ba 26629  df-sm 26630  df-0v 26631  df-vs 26632  df-nmcv 26633  df-ims 26634  df-hnorm 27003  df-hvsub 27006  df-cnfn 27884
This theorem is referenced by:  nlelchi  28098
  Copyright terms: Public domain W3C validator