HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcno Structured version   Visualization version   GIF version

Theorem hhcno 29683
Description: The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcn.1 𝐷 = (norm ∘ − )
hhcn.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
hhcno ContOp = (𝐽 Cn 𝐽)

Proof of Theorem hhcno
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3149 . 2 {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)} = {𝑡 ∣ (𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
2 df-cnop 29619 . 2 ContOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
3 hhcn.1 . . . . . . . . . . . . . 14 𝐷 = (norm ∘ − )
43hilmetdval 28975 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑥 𝑤)))
5 normsub 28922 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (norm‘(𝑥 𝑤)) = (norm‘(𝑤 𝑥)))
64, 5eqtrd 2858 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
76adantll 712 . . . . . . . . . . 11 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
87breq1d 5078 . . . . . . . . . 10 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥𝐷𝑤) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 𝑧))
9 ffvelrn 6851 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℋ)
10 ffvelrn 6851 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ ℋ ∧ 𝑤 ∈ ℋ) → (𝑡𝑤) ∈ ℋ)
119, 10anim12dan 620 . . . . . . . . . . . . 13 ((𝑡: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ))
123hilmetdval 28975 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑥) − (𝑡𝑤))))
13 normsub 28922 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ) → (norm‘((𝑡𝑥) − (𝑡𝑤))) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1412, 13eqtrd 2858 . . . . . . . . . . . . 13 (((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1511, 14syl 17 . . . . . . . . . . . 12 ((𝑡: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1615anassrs 470 . . . . . . . . . . 11 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1716breq1d 5078 . . . . . . . . . 10 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦 ↔ (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))
188, 17imbi12d 347 . . . . . . . . 9 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
1918ralbidva 3198 . . . . . . . 8 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2019rexbidv 3299 . . . . . . 7 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2120ralbidv 3199 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2221ralbidva 3198 . . . . 5 (𝑡: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2322pm5.32i 577 . . . 4 ((𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
243hilxmet 28974 . . . . 5 𝐷 ∈ (∞Met‘ ℋ)
25 hhcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
2625, 25metcn 23155 . . . . 5 ((𝐷 ∈ (∞Met‘ ℋ) ∧ 𝐷 ∈ (∞Met‘ ℋ)) → (𝑡 ∈ (𝐽 Cn 𝐽) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦))))
2724, 24, 26mp2an 690 . . . 4 (𝑡 ∈ (𝐽 Cn 𝐽) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦)))
28 ax-hilex 28778 . . . . . 6 ℋ ∈ V
2928, 28elmap 8437 . . . . 5 (𝑡 ∈ ( ℋ ↑m ℋ) ↔ 𝑡: ℋ⟶ ℋ)
3029anbi1i 625 . . . 4 ((𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3123, 27, 303bitr4i 305 . . 3 (𝑡 ∈ (𝐽 Cn 𝐽) ↔ (𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3231abbi2i 2955 . 2 (𝐽 Cn 𝐽) = {𝑡 ∣ (𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
331, 2, 323eqtr4i 2856 1 ContOp = (𝐽 Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2801  wral 3140  wrex 3141  {crab 3144   class class class wbr 5068  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408   < clt 10677  +crp 12392  ∞Metcxmet 20532  MetOpencmopn 20537   Cn ccn 21834  chba 28698  normcno 28702   cmv 28704  ContOpccop 28725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvmulass 28786  ax-hvdistr1 28787  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cn 21837  df-cnp 21838  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-vs 28378  df-nmcv 28379  df-ims 28380  df-hnorm 28747  df-hvsub 28750  df-cnop 29619
This theorem is referenced by:  hmopidmchi  29930
  Copyright terms: Public domain W3C validator