HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhnv Structured version   Visualization version   GIF version

Theorem hhnv 27910
Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhnv 𝑈 ∈ NrmCVec

Proof of Theorem hhnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 27905 . . . 4 + ∈ AbelOp
2 ablogrpo 27289 . . . 4 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . . 3 + ∈ GrpOp
4 ax-hfvadd 27745 . . . 4 + :( ℋ × ℋ)⟶ ℋ
54fdmi 6019 . . 3 dom + = ( ℋ × ℋ)
63, 5grporn 27263 . 2 ℋ = ran +
7 hilid 27906 . . 3 (GId‘ + ) = 0
87eqcomi 2630 . 2 0 = (GId‘ + )
9 hilvc 27907 . 2 ⟨ + , · ⟩ ∈ CVecOLD
10 normf 27868 . 2 norm: ℋ⟶ℝ
11 norm-i 27874 . . 3 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
1211biimpa 501 . 2 ((𝑥 ∈ ℋ ∧ (norm𝑥) = 0) → 𝑥 = 0)
13 norm-iii 27885 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
14 norm-ii 27883 . 2 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
15 hhnv.1 . 2 𝑈 = ⟨⟨ + , · ⟩, norm
166, 8, 9, 10, 12, 13, 14, 15isnvi 27356 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  cop 4161   × cxp 5082  cfv 5857  0cc0 9896  GrpOpcgr 27231  GIdcgi 27232  AbelOpcablo 27286  NrmCVeccnv 27327  chil 27664   + cva 27665   · csm 27666  normcno 27668  0c0v 27669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-hilex 27744  ax-hfvadd 27745  ax-hvcom 27746  ax-hvass 27747  ax-hv0cl 27748  ax-hvaddid 27749  ax-hfvmul 27750  ax-hvmulid 27751  ax-hvmulass 27752  ax-hvdistr1 27753  ax-hvdistr2 27754  ax-hvmul0 27755  ax-hfi 27824  ax-his1 27827  ax-his2 27828  ax-his3 27829  ax-his4 27830
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-grpo 27235  df-gid 27236  df-ablo 27287  df-vc 27302  df-nv 27335  df-hnorm 27713  df-hvsub 27716
This theorem is referenced by:  hhva  27911  hh0v  27913  hhsm  27914  hhvs  27915  hhnm  27916  hhims  27917  hhmet  27919  hhmetdval  27921  hhip  27922  hhph  27923  hlimadd  27938  hhcau  27943  hhlm  27944  hhhl  27949  hhssabloilem  28006  hhsst  28011  hhshsslem1  28012  hhshsslem2  28013  hhsssh  28014  hhsssh2  28015  hhssvs  28017  occllem  28050  nmopsetretHIL  28611  hhlnoi  28647  hhnmoi  28648  hhbloi  28649  hh0oi  28650  nmopub2tHIL  28657  nmlnop0iHIL  28743  hmopidmchi  28898
  Copyright terms: Public domain W3C validator