HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhshsslem2 Structured version   Visualization version   GIF version

Theorem hhshsslem2 27971
Description: Lemma for hhsssh 27972. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssp3.3 𝑊 ∈ (SubSp‘𝑈)
hhssp3.4 𝐻 ⊆ ℋ
Assertion
Ref Expression
hhshsslem2 𝐻S

Proof of Theorem hhshsslem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hhssp3.4 . . 3 𝐻 ⊆ ℋ
2 hhsst.1 . . . . . 6 𝑈 = ⟨⟨ + , · ⟩, norm
32hhnv 27868 . . . . 5 𝑈 ∈ NrmCVec
4 hhssp3.3 . . . . 5 𝑊 ∈ (SubSp‘𝑈)
52hh0v 27871 . . . . . 6 0 = (0vec𝑈)
6 eqid 2621 . . . . . 6 (0vec𝑊) = (0vec𝑊)
7 eqid 2621 . . . . . 6 (SubSp‘𝑈) = (SubSp‘𝑈)
85, 6, 7sspz 27436 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (0vec𝑊) = 0)
93, 4, 8mp2an 707 . . . 4 (0vec𝑊) = 0
107sspnv 27427 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
113, 4, 10mp2an 707 . . . . . 6 𝑊 ∈ NrmCVec
12 eqid 2621 . . . . . . 7 (BaseSet‘𝑊) = (BaseSet‘𝑊)
1312, 6nvzcl 27335 . . . . . 6 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
1411, 13ax-mp 5 . . . . 5 (0vec𝑊) ∈ (BaseSet‘𝑊)
15 hhsst.2 . . . . . 6 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
162, 15, 4, 1hhshsslem1 27970 . . . . 5 𝐻 = (BaseSet‘𝑊)
1714, 16eleqtrri 2697 . . . 4 (0vec𝑊) ∈ 𝐻
189, 17eqeltrri 2695 . . 3 0𝐻
191, 18pm3.2i 471 . 2 (𝐻 ⊆ ℋ ∧ 0𝐻)
202hhva 27869 . . . . . . 7 + = ( +𝑣𝑈)
21 eqid 2621 . . . . . . 7 ( +𝑣𝑊) = ( +𝑣𝑊)
2216, 20, 21, 7sspgval 27430 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥( +𝑣𝑊)𝑦) = (𝑥 + 𝑦))
233, 4, 22mpanl12 717 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) = (𝑥 + 𝑦))
2416, 21nvgcl 27321 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) ∈ 𝐻)
2511, 24mp3an1 1408 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) ∈ 𝐻)
2623, 25eqeltrrd 2699 . . . 4 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
2726rgen2a 2971 . . 3 𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻
282hhsm 27872 . . . . . . 7 · = ( ·𝑠OLD𝑈)
29 eqid 2621 . . . . . . 7 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
3016, 28, 29, 7sspsval 27432 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝐻)) → (𝑥( ·𝑠OLD𝑊)𝑦) = (𝑥 · 𝑦))
313, 4, 30mpanl12 717 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) = (𝑥 · 𝑦))
3216, 29nvscl 27327 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) ∈ 𝐻)
3311, 32mp3an1 1408 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) ∈ 𝐻)
3431, 33eqeltrrd 2699 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
3534rgen2 2969 . . 3 𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻
3627, 35pm3.2i 471 . 2 (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)
37 issh2 27912 . 2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
3819, 36, 37mpbir2an 954 1 𝐻S
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1987  wral 2907  wss 3555  cop 4154   × cxp 5072  cres 5076  cfv 5847  (class class class)co 6604  cc 9878  NrmCVeccnv 27285   +𝑣 cpv 27286  BaseSetcba 27287   ·𝑠OLD cns 27288  0veccn0v 27289  SubSpcss 27422  chil 27622   + cva 27623   · csm 27624  normcno 27626  0c0v 27627   S csh 27631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-hilex 27702  ax-hfvadd 27703  ax-hvcom 27704  ax-hvass 27705  ax-hv0cl 27706  ax-hvaddid 27707  ax-hfvmul 27708  ax-hvmulid 27709  ax-hvmulass 27710  ax-hvdistr1 27711  ax-hvdistr2 27712  ax-hvmul0 27713  ax-hfi 27782  ax-his1 27785  ax-his2 27786  ax-his3 27787  ax-his4 27788
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-grpo 27193  df-gid 27194  df-ginv 27195  df-gdiv 27196  df-ablo 27245  df-vc 27260  df-nv 27293  df-va 27296  df-ba 27297  df-sm 27298  df-0v 27299  df-vs 27300  df-nmcv 27301  df-ssp 27423  df-hnorm 27671  df-hvsub 27674  df-sh 27910
This theorem is referenced by:  hhsssh  27972
  Copyright terms: Public domain W3C validator