HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsssh Structured version   Visualization version   GIF version

Theorem hhsssh 28974
Description: The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
Assertion
Ref Expression
hhsssh (𝐻S ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))

Proof of Theorem hhsssh
StepHypRef Expression
1 hhsst.1 . . . 4 𝑈 = ⟨⟨ + , · ⟩, norm
2 hhsst.2 . . . 4 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
31, 2hhsst 28971 . . 3 (𝐻S𝑊 ∈ (SubSp‘𝑈))
4 shss 28915 . . 3 (𝐻S𝐻 ⊆ ℋ)
53, 4jca 512 . 2 (𝐻S → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))
6 eleq1 2900 . . 3 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻S ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ∈ S ))
7 eqid 2821 . . . 4 ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩
8 xpeq1 5563 . . . . . . . . . . . . 13 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × 𝐻))
9 xpeq2 5570 . . . . . . . . . . . . 13 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
108, 9eqtrd 2856 . . . . . . . . . . . 12 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1110reseq2d 5847 . . . . . . . . . . 11 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( + ↾ (𝐻 × 𝐻)) = ( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
12 xpeq2 5570 . . . . . . . . . . . 12 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (ℂ × 𝐻) = (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1312reseq2d 5847 . . . . . . . . . . 11 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( · ↾ (ℂ × 𝐻)) = ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
1411, 13opeq12d 4805 . . . . . . . . . 10 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ = ⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩)
15 reseq2 5842 . . . . . . . . . 10 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (norm𝐻) = (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1614, 15opeq12d 4805 . . . . . . . . 9 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
172, 16syl5eq 2868 . . . . . . . 8 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → 𝑊 = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
1817eleq1d 2897 . . . . . . 7 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝑊 ∈ (SubSp‘𝑈) ↔ ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)))
19 sseq1 3991 . . . . . . 7 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 ⊆ ℋ ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ))
2018, 19anbi12d 630 . . . . . 6 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ) ↔ (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)))
21 xpeq1 5563 . . . . . . . . . . . 12 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × ℋ))
22 xpeq2 5570 . . . . . . . . . . . 12 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2321, 22eqtrd 2856 . . . . . . . . . . 11 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2423reseq2d 5847 . . . . . . . . . 10 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( + ↾ ( ℋ × ℋ)) = ( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
25 xpeq2 5570 . . . . . . . . . . 11 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (ℂ × ℋ) = (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2625reseq2d 5847 . . . . . . . . . 10 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( · ↾ (ℂ × ℋ)) = ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
2724, 26opeq12d 4805 . . . . . . . . 9 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩ = ⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩)
28 reseq2 5842 . . . . . . . . 9 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (norm ↾ ℋ) = (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2927, 28opeq12d 4805 . . . . . . . 8 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
3029eleq1d 2897 . . . . . . 7 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ↔ ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)))
31 sseq1 3991 . . . . . . 7 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ ⊆ ℋ ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ))
3230, 31anbi12d 630 . . . . . 6 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ((⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ∧ ℋ ⊆ ℋ) ↔ (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)))
33 ax-hfvadd 28705 . . . . . . . . . . . 12 + :( ℋ × ℋ)⟶ ℋ
34 ffn 6508 . . . . . . . . . . . 12 ( + :( ℋ × ℋ)⟶ ℋ → + Fn ( ℋ × ℋ))
35 fnresdm 6460 . . . . . . . . . . . 12 ( + Fn ( ℋ × ℋ) → ( + ↾ ( ℋ × ℋ)) = + )
3633, 34, 35mp2b 10 . . . . . . . . . . 11 ( + ↾ ( ℋ × ℋ)) = +
37 ax-hfvmul 28710 . . . . . . . . . . . 12 · :(ℂ × ℋ)⟶ ℋ
38 ffn 6508 . . . . . . . . . . . 12 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
39 fnresdm 6460 . . . . . . . . . . . 12 ( · Fn (ℂ × ℋ) → ( · ↾ (ℂ × ℋ)) = · )
4037, 38, 39mp2b 10 . . . . . . . . . . 11 ( · ↾ (ℂ × ℋ)) = ·
4136, 40opeq12i 4802 . . . . . . . . . 10 ⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩ = ⟨ + , ·
42 normf 28828 . . . . . . . . . . 11 norm: ℋ⟶ℝ
43 ffn 6508 . . . . . . . . . . 11 (norm: ℋ⟶ℝ → norm Fn ℋ)
44 fnresdm 6460 . . . . . . . . . . 11 (norm Fn ℋ → (norm ↾ ℋ) = norm)
4542, 43, 44mp2b 10 . . . . . . . . . 10 (norm ↾ ℋ) = norm
4641, 45opeq12i 4802 . . . . . . . . 9 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = ⟨⟨ + , · ⟩, norm
4746, 1eqtr4i 2847 . . . . . . . 8 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = 𝑈
481hhnv 28870 . . . . . . . . 9 𝑈 ∈ NrmCVec
49 eqid 2821 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
5049sspid 28430 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝑈 ∈ (SubSp‘𝑈))
5148, 50ax-mp 5 . . . . . . . 8 𝑈 ∈ (SubSp‘𝑈)
5247, 51eqeltri 2909 . . . . . . 7 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈)
53 ssid 3988 . . . . . . 7 ℋ ⊆ ℋ
5452, 53pm3.2i 471 . . . . . 6 (⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ∧ ℋ ⊆ ℋ)
5520, 32, 54elimhyp 4528 . . . . 5 (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)
5655simpli 484 . . . 4 ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)
5755simpri 486 . . . 4 if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ
581, 7, 56, 57hhshsslem2 28973 . . 3 if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ∈ S
596, 58dedth 4521 . 2 ((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ) → 𝐻S )
605, 59impbii 210 1 (𝐻S ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wcel 2105  wss 3935  ifcif 4465  cop 4565   × cxp 5547  cres 5551   Fn wfn 6344  wf 6345  cfv 6349  cc 10524  cr 10525  NrmCVeccnv 28289  SubSpcss 28426  chba 28624   + cva 28625   · csm 28626  normcno 28628   S csh 28633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606  ax-hilex 28704  ax-hfvadd 28705  ax-hvcom 28706  ax-hvass 28707  ax-hv0cl 28708  ax-hvaddid 28709  ax-hfvmul 28710  ax-hvmulid 28711  ax-hvmulass 28712  ax-hvdistr1 28713  ax-hvdistr2 28714  ax-hvmul0 28715  ax-hfi 28784  ax-his1 28787  ax-his2 28788  ax-his3 28789  ax-his4 28790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-n0 11887  df-z 11971  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-icc 12735  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-topgen 16707  df-psmet 20467  df-xmet 20468  df-met 20469  df-bl 20470  df-mopn 20471  df-top 21432  df-topon 21449  df-bases 21484  df-lm 21767  df-haus 21853  df-grpo 28198  df-gid 28199  df-ginv 28200  df-gdiv 28201  df-ablo 28250  df-vc 28264  df-nv 28297  df-va 28300  df-ba 28301  df-sm 28302  df-0v 28303  df-vs 28304  df-nmcv 28305  df-ims 28306  df-ssp 28427  df-hnorm 28673  df-hba 28674  df-hvsub 28676  df-hlim 28677  df-sh 28912  df-ch 28926  df-ch0 28958
This theorem is referenced by:  hhsssh2  28975
  Copyright terms: Public domain W3C validator