HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hial0 Structured version   Visualization version   GIF version

Theorem hial0 27820
Description: A vector whose inner product is always zero is zero. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hial0 (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 ↔ 𝐴 = 0))
Distinct variable group:   𝑥,𝐴

Proof of Theorem hial0
StepHypRef Expression
1 oveq2 6615 . . . . 5 (𝑥 = 𝐴 → (𝐴 ·ih 𝑥) = (𝐴 ·ih 𝐴))
21eqeq1d 2623 . . . 4 (𝑥 = 𝐴 → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐴) = 0))
32rspcv 3291 . . 3 (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 → (𝐴 ·ih 𝐴) = 0))
4 his6 27817 . . 3 (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0))
53, 4sylibd 229 . 2 (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 → 𝐴 = 0))
6 oveq1 6614 . . . . . 6 (𝐴 = 0 → (𝐴 ·ih 𝑥) = (0 ·ih 𝑥))
7 hi01 27814 . . . . . 6 (𝑥 ∈ ℋ → (0 ·ih 𝑥) = 0)
86, 7sylan9eq 2675 . . . . 5 ((𝐴 = 0𝑥 ∈ ℋ) → (𝐴 ·ih 𝑥) = 0)
98ex 450 . . . 4 (𝐴 = 0 → (𝑥 ∈ ℋ → (𝐴 ·ih 𝑥) = 0))
109a1i 11 . . 3 (𝐴 ∈ ℋ → (𝐴 = 0 → (𝑥 ∈ ℋ → (𝐴 ·ih 𝑥) = 0)))
1110ralrimdv 2962 . 2 (𝐴 ∈ ℋ → (𝐴 = 0 → ∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0))
125, 11impbid 202 1 (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  wral 2907  (class class class)co 6607  0cc0 9883  chil 27637   ·ih csp 27640  0c0v 27642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-hv0cl 27721  ax-hvmul0 27728  ax-hfi 27797  ax-his3 27802  ax-his4 27803
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-po 4997  df-so 4998  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-ltxr 10026
This theorem is referenced by:  choc1  28047  ho01i  28548  ho02i  28549
  Copyright terms: Public domain W3C validator