Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hilbert1.2 Structured version   Visualization version   GIF version

Theorem hilbert1.2 32568
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
hilbert1.2 (𝑃𝑄 → ∃*𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑄

Proof of Theorem hilbert1.2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 an4 900 . . . . 5 (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) ↔ ((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))))
2 simprl 811 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → 𝑥 ∈ LinesEE)
3 simprr 813 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → (𝑃𝑥𝑄𝑥))
4 simpl 474 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → 𝑃𝑄)
5 linethru 32566 . . . . . . . . 9 ((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥) ∧ 𝑃𝑄) → 𝑥 = (𝑃Line𝑄))
62, 3, 4, 5syl3anc 1477 . . . . . . . 8 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → 𝑥 = (𝑃Line𝑄))
76ex 449 . . . . . . 7 (𝑃𝑄 → ((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) → 𝑥 = (𝑃Line𝑄)))
8 simprl 811 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 ∈ LinesEE)
9 simprr 813 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → (𝑃𝑦𝑄𝑦))
10 simpl 474 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑄)
11 linethru 32566 . . . . . . . . 9 ((𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦) ∧ 𝑃𝑄) → 𝑦 = (𝑃Line𝑄))
128, 9, 10, 11syl3anc 1477 . . . . . . . 8 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 = (𝑃Line𝑄))
1312ex 449 . . . . . . 7 (𝑃𝑄 → ((𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦)) → 𝑦 = (𝑃Line𝑄)))
147, 13anim12d 587 . . . . . 6 (𝑃𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → (𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄))))
15 eqtr3 2781 . . . . . 6 ((𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)) → 𝑥 = 𝑦)
1614, 15syl6 35 . . . . 5 (𝑃𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = 𝑦))
171, 16syl5bi 232 . . . 4 (𝑃𝑄 → (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = 𝑦))
1817expd 451 . . 3 (𝑃𝑄 → ((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) → (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦)))
1918ralrimivv 3108 . 2 (𝑃𝑄 → ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
20 eleq2w 2823 . . . 4 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
21 eleq2w 2823 . . . 4 (𝑥 = 𝑦 → (𝑄𝑥𝑄𝑦))
2220, 21anbi12d 749 . . 3 (𝑥 = 𝑦 → ((𝑃𝑥𝑄𝑥) ↔ (𝑃𝑦𝑄𝑦)))
2322rmo4 3540 . 2 (∃*𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥) ↔ ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2419, 23sylibr 224 1 (𝑃𝑄 → ∃*𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  ∃*wrmo 3053  (class class class)co 6813  Linecline2 32547  LinesEEclines2 32549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-ec 7913  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-ee 25970  df-btwn 25971  df-cgr 25972  df-ofs 32396  df-colinear 32452  df-ifs 32453  df-cgr3 32454  df-fs 32455  df-line2 32550  df-lines2 32552
This theorem is referenced by:  linethrueu  32569
  Copyright terms: Public domain W3C validator