![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hilbert1.2 | Structured version Visualization version GIF version |
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
hilbert1.2 | ⊢ (𝑃 ≠ 𝑄 → ∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 900 | . . . . 5 ⊢ (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) ↔ ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)))) | |
2 | simprl 811 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑥 ∈ LinesEE) | |
3 | simprr 813 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | |
4 | simpl 474 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑃 ≠ 𝑄) | |
5 | linethru 32566 | . . . . . . . . 9 ⊢ ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ 𝑃 ≠ 𝑄) → 𝑥 = (𝑃Line𝑄)) | |
6 | 2, 3, 4, 5 | syl3anc 1477 | . . . . . . . 8 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑥 = (𝑃Line𝑄)) |
7 | 6 | ex 449 | . . . . . . 7 ⊢ (𝑃 ≠ 𝑄 → ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) → 𝑥 = (𝑃Line𝑄))) |
8 | simprl 811 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 ∈ LinesEE) | |
9 | simprr 813 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) | |
10 | simpl 474 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ≠ 𝑄) | |
11 | linethru 32566 | . . . . . . . . 9 ⊢ ((𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦) ∧ 𝑃 ≠ 𝑄) → 𝑦 = (𝑃Line𝑄)) | |
12 | 8, 9, 10, 11 | syl3anc 1477 | . . . . . . . 8 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 = (𝑃Line𝑄)) |
13 | 12 | ex 449 | . . . . . . 7 ⊢ (𝑃 ≠ 𝑄 → ((𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑦 = (𝑃Line𝑄))) |
14 | 7, 13 | anim12d 587 | . . . . . 6 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → (𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)))) |
15 | eqtr3 2781 | . . . . . 6 ⊢ ((𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)) → 𝑥 = 𝑦) | |
16 | 14, 15 | syl6 35 | . . . . 5 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦)) |
17 | 1, 16 | syl5bi 232 | . . . 4 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦)) |
18 | 17 | expd 451 | . . 3 ⊢ (𝑃 ≠ 𝑄 → ((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) → (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦))) |
19 | 18 | ralrimivv 3108 | . 2 ⊢ (𝑃 ≠ 𝑄 → ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
20 | eleq2w 2823 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | |
21 | eleq2w 2823 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ 𝑦)) | |
22 | 20, 21 | anbi12d 749 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) |
23 | 22 | rmo4 3540 | . 2 ⊢ (∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
24 | 19, 23 | sylibr 224 | 1 ⊢ (𝑃 ≠ 𝑄 → ∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ∃*wrmo 3053 (class class class)co 6813 Linecline2 32547 LinesEEclines2 32549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-ec 7913 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-oi 8580 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-ico 12374 df-icc 12375 df-fz 12520 df-fzo 12660 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 df-sum 14616 df-ee 25970 df-btwn 25971 df-cgr 25972 df-ofs 32396 df-colinear 32452 df-ifs 32453 df-cgr3 32454 df-fs 32455 df-line2 32550 df-lines2 32552 |
This theorem is referenced by: linethrueu 32569 |
Copyright terms: Public domain | W3C validator |