HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his2sub2 Structured version   Visualization version   GIF version

Theorem his2sub2 28862
Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
his2sub2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 𝐶)) = ((𝐴 ·ih 𝐵) − (𝐴 ·ih 𝐶)))

Proof of Theorem his2sub2
StepHypRef Expression
1 his2sub 28861 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴)))
21fveq2d 6667 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 𝐶) ·ih 𝐴)) = (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))))
3 hicl 28849 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
4 hicl 28849 . . . . . 6 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐶 ·ih 𝐴) ∈ ℂ)
5 cjsub 14500 . . . . . 6 (((𝐵 ·ih 𝐴) ∈ ℂ ∧ (𝐶 ·ih 𝐴) ∈ ℂ) → (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴))))
63, 4, 5syl2an 597 . . . . 5 (((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ)) → (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴))))
763impdir 1346 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴))))
82, 7eqtrd 2854 . . 3 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴))))
983comr 1120 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘((𝐵 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴))))
10 hvsubcl 28786 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 𝐶) ∈ ℋ)
11 ax-his1 28851 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 𝐶) ∈ ℋ) → (𝐴 ·ih (𝐵 𝐶)) = (∗‘((𝐵 𝐶) ·ih 𝐴)))
1210, 11sylan2 594 . . 3 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝐴 ·ih (𝐵 𝐶)) = (∗‘((𝐵 𝐶) ·ih 𝐴)))
13123impb 1110 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 𝐶)) = (∗‘((𝐵 𝐶) ·ih 𝐴)))
14 ax-his1 28851 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
15143adant3 1127 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
16 ax-his1 28851 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴)))
17163adant2 1126 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴)))
1815, 17oveq12d 7166 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐵) − (𝐴 ·ih 𝐶)) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴))))
199, 13, 183eqtr4d 2864 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 𝐶)) = ((𝐴 ·ih 𝐵) − (𝐴 ·ih 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  cfv 6348  (class class class)co 7148  cc 10527  cmin 10862  ccj 14447  chba 28688   ·ih csp 28691   cmv 28694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-hfvadd 28769  ax-hfvmul 28774  ax-hfi 28848  ax-his1 28851  ax-his2 28852  ax-his3 28853
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-2 11692  df-cj 14450  df-re 14451  df-im 14452  df-hvsub 28740
This theorem is referenced by:  pjhthlem1  29160  riesz4i  29832
  Copyright terms: Public domain W3C validator