MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hladdf Structured version   Visualization version   GIF version

Theorem hladdf 27625
Description: Mapping for Hilbert space vector addition. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hladdf.1 𝑋 = (BaseSet‘𝑈)
hladdf.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
hladdf (𝑈 ∈ CHilOLD𝐺:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem hladdf
StepHypRef Expression
1 hlnv 27617 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
2 hladdf.1 . . 3 𝑋 = (BaseSet‘𝑈)
3 hladdf.2 . . 3 𝐺 = ( +𝑣𝑈)
42, 3nvgf 27343 . 2 (𝑈 ∈ NrmCVec → 𝐺:(𝑋 × 𝑋)⟶𝑋)
51, 4syl 17 1 (𝑈 ∈ CHilOLD𝐺:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987   × cxp 5077  wf 5848  cfv 5852  NrmCVeccnv 27309   +𝑣 cpv 27310  BaseSetcba 27311  CHilOLDchlo 27611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-1st 7120  df-2nd 7121  df-grpo 27217  df-ablo 27269  df-vc 27284  df-nv 27317  df-va 27320  df-ba 27321  df-sm 27322  df-0v 27323  df-nmcv 27325  df-cbn 27589  df-hlo 27612
This theorem is referenced by:  axhfvadd-zf  27709
  Copyright terms: Public domain W3C validator