![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej1 | Structured version Visualization version GIF version |
Description: A join's first argument is less than or equal to the join. Special case of latlej1 17232 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | ⊢ ≤ = (le‘𝐾) |
hlatlej.j | ⊢ ∨ = (join‘𝐾) |
hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatlej1 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 35122 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2748 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatlej.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 35048 | . 2 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
5 | 2, 3 | atbase 35048 | . 2 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
6 | hlatlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
7 | hlatlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
8 | 2, 6, 7 | latlej1 17232 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
9 | 1, 4, 5, 8 | syl3an 1505 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 class class class wbr 4792 ‘cfv 6037 (class class class)co 6801 Basecbs 16030 lecple 16121 joincjn 17116 Latclat 17217 Atomscatm 35022 HLchlt 35109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-lub 17146 df-join 17148 df-lat 17218 df-ats 35026 df-atl 35057 df-cvlat 35081 df-hlat 35110 |
This theorem is referenced by: hlatlej2 35134 cvratlem 35179 cvrat4 35201 ps-2 35236 lplnllnneN 35314 dalem1 35417 lnatexN 35537 lncmp 35541 2atm2atN 35543 2llnma3r 35546 dalawlem3 35631 dalawlem6 35634 dalawlem7 35635 dalawlem12 35640 trlval4 35947 cdlemc5 35954 cdlemc6 35955 cdlemd3 35959 cdleme0cp 35973 cdleme3h 35994 cdleme5 35999 cdleme9 36012 cdleme11c 36020 cdleme15b 36034 cdleme17b 36046 cdleme19a 36062 cdleme20c 36070 cdleme20j 36077 cdleme21c 36086 cdleme22b 36100 cdleme22d 36102 cdleme22e 36103 cdleme22eALTN 36104 cdleme35e 36212 cdleme35f 36213 cdleme42a 36230 cdleme17d2 36254 cdlemeg46req 36288 cdlemg13a 36410 cdlemg17a 36420 cdlemg18b 36438 cdlemg27a 36451 trlcoabs2N 36481 cdlemg42 36488 cdlemk4 36593 cdlemk1u 36618 cdlemk39 36675 dia2dimlem1 36824 dia2dimlem2 36825 dia2dimlem3 36826 cdlemm10N 36878 cdlemn10 36966 dihjatcclem1 37178 |
Copyright terms: Public domain | W3C validator |