Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcgreu Structured version   Visualization version   GIF version

Theorem hlcgreu 25633
 Description: The point constructed in hlcgrex 25631 is unique. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlcgrex.m = (dist‘𝐺)
hlcgrex.1 (𝜑𝐷𝐴)
hlcgrex.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
hlcgreu (𝜑 → ∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hlcgreu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
2 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
3 ishlg.k . . . 4 𝐾 = (hlG‘𝐺)
4 ishlg.a . . . 4 (𝜑𝐴𝑃)
5 ishlg.b . . . 4 (𝜑𝐵𝑃)
6 ishlg.c . . . 4 (𝜑𝐶𝑃)
7 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
8 hltr.d . . . 4 (𝜑𝐷𝑃)
9 hlcgrex.m . . . 4 = (dist‘𝐺)
10 hlcgrex.1 . . . 4 (𝜑𝐷𝐴)
11 hlcgrex.2 . . . 4 (𝜑𝐵𝐶)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hlcgrex 25631 . . 3 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
134ad3antrrr 768 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐴𝑃)
145ad3antrrr 768 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐵𝑃)
156ad3antrrr 768 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐶𝑃)
167ad3antrrr 768 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐺 ∈ TarskiG)
178ad3antrrr 768 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐷𝑃)
1810ad3antrrr 768 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐷𝐴)
1911ad3antrrr 768 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝐵𝐶)
20 simpllr 817 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥𝑃)
21 simplr 809 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑦𝑃)
22 simprll 821 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥(𝐾𝐴)𝐷)
23 simprrl 823 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑦(𝐾𝐴)𝐷)
24 simprlr 822 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → (𝐴 𝑥) = (𝐵 𝐶))
25 simprrr 824 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → (𝐴 𝑦) = (𝐵 𝐶))
261, 2, 3, 13, 14, 15, 16, 17, 9, 18, 19, 20, 21, 22, 23, 24, 25hlcgreulem 25632 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶)))) → 𝑥 = 𝑦)
2726ex 449 . . . . 5 (((𝜑𝑥𝑃) ∧ 𝑦𝑃) → (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
2827ralrimiva 3068 . . . 4 ((𝜑𝑥𝑃) → ∀𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
2928ralrimiva 3068 . . 3 (𝜑 → ∀𝑥𝑃𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦))
3012, 29jca 555 . 2 (𝜑 → (∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ ∀𝑥𝑃𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦)))
31 breq1 4763 . . . 4 (𝑥 = 𝑦 → (𝑥(𝐾𝐴)𝐷𝑦(𝐾𝐴)𝐷))
32 oveq2 6773 . . . . 5 (𝑥 = 𝑦 → (𝐴 𝑥) = (𝐴 𝑦))
33 eqidd 2725 . . . . 5 (𝑥 = 𝑦 → (𝐵 𝐶) = (𝐵 𝐶))
3432, 33eqeq12d 2739 . . . 4 (𝑥 = 𝑦 → ((𝐴 𝑥) = (𝐵 𝐶) ↔ (𝐴 𝑦) = (𝐵 𝐶)))
3531, 34anbi12d 749 . . 3 (𝑥 = 𝑦 → ((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ↔ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))))
3635reu4 3506 . 2 (∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ↔ (∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ ∀𝑥𝑃𝑦𝑃 (((𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)) ∧ (𝑦(𝐾𝐴)𝐷 ∧ (𝐴 𝑦) = (𝐵 𝐶))) → 𝑥 = 𝑦)))
3730, 36sylibr 224 1 (𝜑 → ∃!𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1596   ∈ wcel 2103   ≠ wne 2896  ∀wral 3014  ∃wrex 3015  ∃!wreu 3016   class class class wbr 4760  ‘cfv 6001  (class class class)co 6765  Basecbs 15980  distcds 16073  TarskiGcstrkg 25449  Itvcitv 25455  hlGchlg 25615 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-xnn0 11477  df-z 11491  df-uz 11801  df-fz 12441  df-fzo 12581  df-hash 13233  df-word 13406  df-concat 13408  df-s1 13409  df-s2 13714  df-s3 13715  df-trkgc 25467  df-trkgb 25468  df-trkgcb 25469  df-trkg 25472  df-cgrg 25526  df-hlg 25616 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator