![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlcgreulem | Structured version Visualization version GIF version |
Description: Lemma for hlcgreu 25558. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
hlcgrex.m | ⊢ − = (dist‘𝐺) |
hlcgrex.1 | ⊢ (𝜑 → 𝐷 ≠ 𝐴) |
hlcgrex.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
hlcgreulem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
hlcgreulem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
hlcgreulem.1 | ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝐷) |
hlcgreulem.2 | ⊢ (𝜑 → 𝑌(𝐾‘𝐴)𝐷) |
hlcgreulem.3 | ⊢ (𝜑 → (𝐴 − 𝑋) = (𝐵 − 𝐶)) |
hlcgreulem.4 | ⊢ (𝜑 → (𝐴 − 𝑌) = (𝐵 − 𝐶)) |
Ref | Expression |
---|---|
hlcgreulem | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | hlcgrex.m | . . 3 ⊢ − = (dist‘𝐺) | |
3 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 762 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
6 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad2antrr 762 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ 𝑃) |
8 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | ad2antrr 762 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐵 ∈ 𝑃) |
10 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | 10 | ad2antrr 762 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐶 ∈ 𝑃) |
12 | simplr 807 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑦 ∈ 𝑃) | |
13 | hlcgreulem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
14 | 13 | ad2antrr 762 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑋 ∈ 𝑃) |
15 | hlcgreulem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
16 | 15 | ad2antrr 762 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑌 ∈ 𝑃) |
17 | simprr 811 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ≠ 𝑦) | |
18 | 17 | necomd 2878 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑦 ≠ 𝐴) |
19 | ishlg.k | . . . . 5 ⊢ 𝐾 = (hlG‘𝐺) | |
20 | hltr.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
21 | 20 | ad2antrr 762 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷 ∈ 𝑃) |
22 | hlcgreulem.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝐷) | |
23 | 1, 3, 19, 13, 20, 6, 4, 22 | hlcomd 25544 | . . . . . 6 ⊢ (𝜑 → 𝐷(𝐾‘𝐴)𝑋) |
24 | 23 | ad2antrr 762 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷(𝐾‘𝐴)𝑋) |
25 | simprl 809 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝐷𝐼𝑦)) | |
26 | 1, 3, 19, 21, 14, 12, 5, 7, 24, 25 | btwnhl 25554 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑋𝐼𝑦)) |
27 | 1, 2, 3, 5, 14, 7, 12, 26 | tgbtwncom 25428 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑦𝐼𝑋)) |
28 | hlcgreulem.2 | . . . . . . 7 ⊢ (𝜑 → 𝑌(𝐾‘𝐴)𝐷) | |
29 | 1, 3, 19, 15, 20, 6, 4, 28 | hlcomd 25544 | . . . . . 6 ⊢ (𝜑 → 𝐷(𝐾‘𝐴)𝑌) |
30 | 29 | ad2antrr 762 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷(𝐾‘𝐴)𝑌) |
31 | 1, 3, 19, 21, 16, 12, 5, 7, 30, 25 | btwnhl 25554 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑌𝐼𝑦)) |
32 | 1, 2, 3, 5, 16, 7, 12, 31 | tgbtwncom 25428 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑦𝐼𝑌)) |
33 | hlcgreulem.3 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝑋) = (𝐵 − 𝐶)) | |
34 | 33 | ad2antrr 762 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → (𝐴 − 𝑋) = (𝐵 − 𝐶)) |
35 | hlcgreulem.4 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝑌) = (𝐵 − 𝐶)) | |
36 | 35 | ad2antrr 762 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → (𝐴 − 𝑌) = (𝐵 − 𝐶)) |
37 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 16, 18, 27, 32, 34, 36 | tgsegconeq 25426 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑋 = 𝑌) |
38 | fvex 6239 | . . . . . 6 ⊢ (Base‘𝐺) ∈ V | |
39 | 1, 38 | eqeltri 2726 | . . . . 5 ⊢ 𝑃 ∈ V |
40 | 39 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ V) |
41 | hlcgrex.2 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
42 | 40, 8, 10, 41 | nehash2 13294 | . . 3 ⊢ (𝜑 → 2 ≤ (#‘𝑃)) |
43 | 1, 2, 3, 4, 20, 6, 42 | tgbtwndiff 25446 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) |
44 | 37, 43 | r19.29a 3107 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 distcds 15997 TarskiGcstrkg 25374 Itvcitv 25380 hlGchlg 25540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 df-trkgc 25392 df-trkgb 25393 df-trkgcb 25394 df-trkg 25397 df-hlg 25541 |
This theorem is referenced by: hlcgreu 25558 iscgra1 25747 |
Copyright terms: Public domain | W3C validator |