Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcgrex Structured version   Visualization version   GIF version

Theorem hlcgrex 25710
 Description: Construct a point on a half-line, at a given distance of its origin. (Contributed by Thierry Arnoux, 1-Aug-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlcgrex.m = (dist‘𝐺)
hlcgrex.1 (𝜑𝐷𝐴)
hlcgrex.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
hlcgrex (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hlcgrex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
2 hlcgrex.m . . . 4 = (dist‘𝐺)
3 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 764 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐺 ∈ TarskiG)
6 simplr 809 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑦𝑃)
7 ishlg.a . . . . 5 (𝜑𝐴𝑃)
87ad2antrr 764 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴𝑃)
9 ishlg.b . . . . 5 (𝜑𝐵𝑃)
109ad2antrr 764 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐵𝑃)
11 ishlg.c . . . . 5 (𝜑𝐶𝑃)
1211ad2antrr 764 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐶𝑃)
131, 2, 3, 5, 6, 8, 10, 12axtgsegcon 25562 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → ∃𝑥𝑃 (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)))
145ad2antrr 764 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
1510ad2antrr 764 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐵𝑃)
1612ad2antrr 764 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐶𝑃)
17 simplr 809 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥𝑃)
188ad2antrr 764 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴𝑃)
19 simprr 813 . . . . . . . . . . 11 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐴 𝑥) = (𝐵 𝐶))
201, 2, 3, 14, 18, 17, 15, 16, 19tgcgrcoml 25573 . . . . . . . . . 10 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥 𝐴) = (𝐵 𝐶))
2120eqcomd 2766 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝑥 𝐴))
22 hlcgrex.2 . . . . . . . . . 10 (𝜑𝐵𝐶)
2322ad4antr 771 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐵𝐶)
241, 2, 3, 14, 15, 16, 17, 18, 21, 23tgcgrneq 25577 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥𝐴)
25 hlcgrex.1 . . . . . . . . 9 (𝜑𝐷𝐴)
2625ad4antr 771 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐷𝐴)
276ad2antrr 764 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑦𝑃)
28 hltr.d . . . . . . . . . 10 (𝜑𝐷𝑃)
2928ad4antr 771 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐷𝑃)
30 simpllr 817 . . . . . . . . . . 11 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦))
3130simprd 482 . . . . . . . . . 10 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴𝑦)
3231necomd 2987 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑦𝐴)
33 simprl 811 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝑦𝐼𝑥))
3430simpld 477 . . . . . . . . . 10 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝐷𝐼𝑦))
351, 2, 3, 14, 29, 18, 27, 34tgbtwncom 25582 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝑦𝐼𝐷))
361, 3, 14, 27, 18, 17, 29, 32, 33, 35tgbtwnconn2 25670 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝑥)))
3724, 26, 363jca 1123 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥𝐴𝐷𝐴 ∧ (𝑥 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝑥))))
38 ishlg.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
391, 3, 38, 17, 29, 18, 14ishlg 25696 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥(𝐾𝐴)𝐷 ↔ (𝑥𝐴𝐷𝐴 ∧ (𝑥 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝑥)))))
4037, 39mpbird 247 . . . . . 6 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥(𝐾𝐴)𝐷)
4140, 19jca 555 . . . . 5 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
4241ex 449 . . . 4 ((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) → ((𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)) → (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶))))
4342reximdva 3155 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → (∃𝑥𝑃 (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)) → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶))))
4413, 43mpd 15 . 2 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
45 fvex 6362 . . . . . 6 (Base‘𝐺) ∈ V
461, 45eqeltri 2835 . . . . 5 𝑃 ∈ V
4746a1i 11 . . . 4 (𝜑𝑃 ∈ V)
4847, 9, 11, 22nehash2 13448 . . 3 (𝜑 → 2 ≤ (♯‘𝑃))
491, 2, 3, 4, 28, 7, 48tgbtwndiff 25600 . 2 (𝜑 → ∃𝑦𝑃 (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦))
5044, 49r19.29a 3216 1 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∃wrex 3051  Vcvv 3340   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  Basecbs 16059  distcds 16152  TarskiGcstrkg 25528  Itvcitv 25534  hlGchlg 25694 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-concat 13487  df-s1 13488  df-s2 13793  df-s3 13794  df-trkgc 25546  df-trkgb 25547  df-trkgcb 25548  df-trkg 25551  df-cgrg 25605  df-hlg 25695 This theorem is referenced by:  hlcgreu  25712  trgcopy  25895  cgraswap  25911  cgracom  25913  cgratr  25914  acopy  25923  acopyeu  25924  tgasa1  25938
 Copyright terms: Public domain W3C validator