![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlexch1 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the exchange property. (Contributed by NM, 13-Nov-2011.) |
Ref | Expression |
---|---|
hlsuprexch.b | ⊢ 𝐵 = (Base‘𝐾) |
hlsuprexch.l | ⊢ ≤ = (le‘𝐾) |
hlsuprexch.j | ⊢ ∨ = (join‘𝐾) |
hlsuprexch.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlexch1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 35145 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | hlsuprexch.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | hlsuprexch.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | hlsuprexch.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
5 | hlsuprexch.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 2, 3, 4, 5 | cvlexch1 35114 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
7 | 1, 6 | syl3an1 1167 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1072 = wceq 1628 ∈ wcel 2135 class class class wbr 4800 ‘cfv 6045 (class class class)co 6809 Basecbs 16055 lecple 16146 joincjn 17141 Atomscatm 35049 CvLatclc 35051 HLchlt 35136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-iota 6008 df-fv 6053 df-ov 6812 df-cvlat 35108 df-hlat 35137 |
This theorem is referenced by: cvratlem 35206 4noncolr3 35238 3dimlem4a 35248 3dimlem4OLDN 35250 ps-2 35263 4atlem0a 35378 |
Copyright terms: Public domain | W3C validator |