Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhgt2 Structured version   Visualization version   GIF version

Theorem hlhgt2 34141
Description: A Hilbert lattice has a height of at least 2. (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
hlhgt4.b 𝐵 = (Base‘𝐾)
hlhgt4.s < = (lt‘𝐾)
hlhgt4.z 0 = (0.‘𝐾)
hlhgt4.u 1 = (1.‘𝐾)
Assertion
Ref Expression
hlhgt2 (𝐾 ∈ HL → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 ))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾
Allowed substitution hints:   < (𝑥)   1 (𝑥)   0 (𝑥)

Proof of Theorem hlhgt2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhgt4.b . . 3 𝐵 = (Base‘𝐾)
2 hlhgt4.s . . 3 < = (lt‘𝐾)
3 hlhgt4.z . . 3 0 = (0.‘𝐾)
4 hlhgt4.u . . 3 1 = (1.‘𝐾)
51, 2, 3, 4hlhgt4 34140 . 2 (𝐾 ∈ HL → ∃𝑦𝐵𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )))
6 hlpos 34118 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Poset)
76ad3antrrr 765 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ Poset)
8 hlop 34115 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
98ad3antrrr 765 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
101, 3op0cl 33937 . . . . . . . 8 (𝐾 ∈ OP → 0𝐵)
119, 10syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 0𝐵)
12 simpllr 798 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑦𝐵)
13 simplr 791 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑥𝐵)
141, 2plttr 16886 . . . . . . 7 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑦𝐵𝑥𝐵)) → (( 0 < 𝑦𝑦 < 𝑥) → 0 < 𝑥))
157, 11, 12, 13, 14syl13anc 1325 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → (( 0 < 𝑦𝑦 < 𝑥) → 0 < 𝑥))
16 simpr 477 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
171, 4op1cl 33938 . . . . . . . 8 (𝐾 ∈ OP → 1𝐵)
189, 17syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → 1𝐵)
191, 2plttr 16886 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑧𝐵1𝐵)) → ((𝑥 < 𝑧𝑧 < 1 ) → 𝑥 < 1 ))
207, 13, 16, 18, 19syl13anc 1325 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → ((𝑥 < 𝑧𝑧 < 1 ) → 𝑥 < 1 ))
2115, 20anim12d 585 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) ∧ 𝑧𝐵) → ((( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ( 0 < 𝑥𝑥 < 1 )))
2221rexlimdva 3029 . . . 4 (((𝐾 ∈ HL ∧ 𝑦𝐵) ∧ 𝑥𝐵) → (∃𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ( 0 < 𝑥𝑥 < 1 )))
2322reximdva 3016 . . 3 ((𝐾 ∈ HL ∧ 𝑦𝐵) → (∃𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 )))
2423rexlimdva 3029 . 2 (𝐾 ∈ HL → (∃𝑦𝐵𝑥𝐵𝑧𝐵 (( 0 < 𝑦𝑦 < 𝑥) ∧ (𝑥 < 𝑧𝑧 < 1 )) → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 )))
255, 24mpd 15 1 (𝐾 ∈ HL → ∃𝑥𝐵 ( 0 < 𝑥𝑥 < 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wrex 2913   class class class wbr 4618  cfv 5850  Basecbs 15776  Posetcpo 16856  ltcplt 16857  0.cp0 16953  1.cp1 16954  OPcops 33925  HLchlt 34103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-preset 16844  df-poset 16862  df-plt 16874  df-lub 16890  df-glb 16891  df-p0 16955  df-p1 16956  df-lat 16962  df-oposet 33929  df-ol 33931  df-oml 33932  df-atl 34051  df-cvlat 34075  df-hlat 34104
This theorem is referenced by:  hl0lt1N  34142  hl2at  34157
  Copyright terms: Public domain W3C validator