Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilip Structured version   Visualization version   GIF version

Theorem hlhilip 36717
Description: Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilip.h 𝐻 = (LHyp‘𝐾)
hlhilip.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilip.v 𝑉 = (Base‘𝐿)
hlhilip.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hlhilip.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilip.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilip.p , = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))
Assertion
Ref Expression
hlhilip (𝜑, = (·𝑖𝑈))
Distinct variable groups:   𝑥,𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦)   , (𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem hlhilip
StepHypRef Expression
1 hlhilip.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hlhilip.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
3 hlhilip.l . . . 4 𝐿 = ((DVecH‘𝐾)‘𝑊)
4 hlhilip.v . . . 4 𝑉 = (Base‘𝐿)
5 eqid 2621 . . . 4 (+g𝐿) = (+g𝐿)
6 eqid 2621 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
7 eqid 2621 . . . 4 ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊)
8 eqid 2621 . . . 4 (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩) = (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)
9 eqid 2621 . . . 4 ( ·𝑠𝐿) = ( ·𝑠𝐿)
10 hlhilip.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
11 hlhilip.p . . . 4 , = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))
12 hlhilip.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hlhilset 36703 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩}))
1413fveq2d 6152 . 2 (𝜑 → (·𝑖𝑈) = (·𝑖‘({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩})))
15 fvex 6158 . . . . . 6 (Base‘𝐿) ∈ V
164, 15eqeltri 2694 . . . . 5 𝑉 ∈ V
1716, 16mpt2ex 7192 . . . 4 (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥)) ∈ V
1811, 17eqeltri 2694 . . 3 , ∈ V
19 eqid 2621 . . . 4 ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩}) = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩})
2019phlip 15960 . . 3 ( , ∈ V → , = (·𝑖‘({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩})))
2118, 20ax-mp 5 . 2 , = (·𝑖‘({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩}))
2214, 21syl6reqr 2674 1 (𝜑, = (·𝑖𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  cun 3553  {cpr 4150  {ctp 4152  cop 4154  cfv 5847  (class class class)co 6604  cmpt2 6606  ndxcnx 15778   sSet csts 15779  Basecbs 15781  +gcplusg 15862  *𝑟cstv 15864  Scalarcsca 15865   ·𝑠 cvsca 15866  ·𝑖cip 15867  HLchlt 34114  LHypclh 34747  EDRingcedring 35518  DVecHcdvh 35844  HDMapchdma 36559  HGMapchg 36652  HLHilchlh 36701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-sca 15878  df-vsca 15879  df-ip 15880  df-hlhil 36702
This theorem is referenced by:  hlhilipval  36718
  Copyright terms: Public domain W3C validator