Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhils0 Structured version   Visualization version   GIF version

Theorem hlhils0 37056
 Description: The scalar ring zero for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.)
Hypotheses
Ref Expression
hlhilsbase.h 𝐻 = (LHyp‘𝐾)
hlhilsbase.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilsbase.s 𝑆 = (Scalar‘𝐿)
hlhilsbase.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilsbase.r 𝑅 = (Scalar‘𝑈)
hlhilsbase.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhils0.z 0 = (0g𝑆)
Assertion
Ref Expression
hlhils0 (𝜑0 = (0g𝑅))

Proof of Theorem hlhils0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhils0.z . 2 0 = (0g𝑆)
2 eqidd 2621 . . 3 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
3 hlhilsbase.h . . . 4 𝐻 = (LHyp‘𝐾)
4 hlhilsbase.l . . . 4 𝐿 = ((DVecH‘𝐾)‘𝑊)
5 hlhilsbase.s . . . 4 𝑆 = (Scalar‘𝐿)
6 hlhilsbase.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
7 hlhilsbase.r . . . 4 𝑅 = (Scalar‘𝑈)
8 hlhilsbase.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 eqid 2620 . . . 4 (Base‘𝑆) = (Base‘𝑆)
103, 4, 5, 6, 7, 8, 9hlhilsbase2 37053 . . 3 (𝜑 → (Base‘𝑆) = (Base‘𝑅))
11 eqid 2620 . . . . 5 (+g𝑆) = (+g𝑆)
123, 4, 5, 6, 7, 8, 11hlhilsplus2 37054 . . . 4 (𝜑 → (+g𝑆) = (+g𝑅))
1312oveqdr 6659 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) = (𝑥(+g𝑅)𝑦))
142, 10, 13grpidpropd 17242 . 2 (𝜑 → (0g𝑆) = (0g𝑅))
151, 14syl5eq 2666 1 (𝜑0 = (0g𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1481   ∈ wcel 1988  ‘cfv 5876  Basecbs 15838  +gcplusg 15922  Scalarcsca 15925  0gc0g 16081  HLchlt 34456  LHypclh 35089  DVecHcdvh 36186  HLHilchlh 37043 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-plusg 15935  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-0g 16083  df-dvech 36187  df-hlhil 37044 This theorem is referenced by:  hlhilocv  37068  hlhilphllem  37070
 Copyright terms: Public domain W3C validator