Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilvsca Structured version   Visualization version   GIF version

Theorem hlhilvsca 36758
Description: The scalar product for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilvsca.h 𝐻 = (LHyp‘𝐾)
hlhilvsca.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilvsca.t · = ( ·𝑠𝐿)
hlhilvsca.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilvsca.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hlhilvsca (𝜑· = ( ·𝑠𝑈))

Proof of Theorem hlhilvsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilvsca.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hlhilvsca.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
3 hlhilvsca.l . . . 4 𝐿 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2621 . . . 4 (Base‘𝐿) = (Base‘𝐿)
5 eqid 2621 . . . 4 (+g𝐿) = (+g𝐿)
6 eqid 2621 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
7 eqid 2621 . . . 4 ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊)
8 eqid 2621 . . . 4 (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩) = (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)
9 hlhilvsca.t . . . 4 · = ( ·𝑠𝐿)
10 eqid 2621 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
11 eqid 2621 . . . 4 (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))
12 hlhilvsca.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hlhilset 36745 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
1413fveq2d 6162 . 2 (𝜑 → ( ·𝑠𝑈) = ( ·𝑠 ‘({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
15 fvex 6168 . . . 4 ( ·𝑠𝐿) ∈ V
169, 15eqeltri 2694 . . 3 · ∈ V
17 eqid 2621 . . . 4 ({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})
1817phlvsca 15978 . . 3 ( · ∈ V → · = ( ·𝑠 ‘({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
1916, 18ax-mp 5 . 2 · = ( ·𝑠 ‘({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
2014, 19syl6reqr 2674 1 (𝜑· = ( ·𝑠𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3190  cun 3558  {cpr 4157  {ctp 4159  cop 4161  cfv 5857  (class class class)co 6615  cmpt2 6617  ndxcnx 15797   sSet csts 15798  Basecbs 15800  +gcplusg 15881  *𝑟cstv 15883  Scalarcsca 15884   ·𝑠 cvsca 15885  ·𝑖cip 15886  HLchlt 34156  LHypclh 34789  EDRingcedring 35560  DVecHcdvh 35886  HDMapchdma 36601  HGMapchg 36694  HLHilchlh 36743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-plusg 15894  df-sca 15897  df-vsca 15898  df-ip 15899  df-hlhil 36744
This theorem is referenced by:  hlhillvec  36762  hlhilphllem  36770
  Copyright terms: Public domain W3C validator