HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimcaui Structured version   Visualization version   GIF version

Theorem hlimcaui 27266
Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlimcaui (𝐹𝑣 𝐴𝐹 ∈ Cauchy)

Proof of Theorem hlimcaui
StepHypRef Expression
1 eqid 2514 . . . . . . . 8 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2 eqid 2514 . . . . . . . 8 (IndMet‘⟨⟨ + , · ⟩, norm⟩) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
3 eqid 2514 . . . . . . . 8 (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) = (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
41, 2, 3hhlm 27229 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ))
5 resss 5233 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
64, 5eqsstri 3502 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
7 dmss 5136 . . . . . 6 ( ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) → dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
86, 7ax-mp 5 . . . . 5 dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
91, 2hhxmet 27205 . . . . . 6 (IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ)
103lmcau 22783 . . . . . 6 ((IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ) → dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
119, 10ax-mp 5 . . . . 5 dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
128, 11sstri 3481 . . . 4 dom ⇝𝑣 ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
134dmeqi 5138 . . . . . 6 dom ⇝𝑣 = dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ))
14 dmres 5230 . . . . . 6 dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ)) = (( ℋ ↑𝑚 ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
1513, 14eqtri 2536 . . . . 5 dom ⇝𝑣 = (( ℋ ↑𝑚 ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
16 inss1 3698 . . . . 5 (( ℋ ↑𝑚 ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))) ⊆ ( ℋ ↑𝑚 ℕ)
1715, 16eqsstri 3502 . . . 4 dom ⇝𝑣 ⊆ ( ℋ ↑𝑚 ℕ)
1812, 17ssini 3701 . . 3 dom ⇝𝑣 ⊆ ((Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∩ ( ℋ ↑𝑚 ℕ))
191, 2hhcau 27228 . . 3 Cauchy = ((Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∩ ( ℋ ↑𝑚 ℕ))
2018, 19sseqtr4i 3505 . 2 dom ⇝𝑣 ⊆ Cauchy
21 relres 5237 . . . 4 Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ))
224releqi 5019 . . . 4 (Rel ⇝𝑣 ↔ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ)))
2321, 22mpbir 219 . . 3 Rel ⇝𝑣
2423releldmi 5174 . 2 (𝐹𝑣 𝐴𝐹 ∈ dom ⇝𝑣 )
2520, 24sseldi 3470 1 (𝐹𝑣 𝐴𝐹 ∈ Cauchy)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1938  cin 3443  wss 3444  cop 4034   class class class wbr 4481  dom cdm 4932  cres 4934  Rel wrel 4937  cfv 5689  (class class class)co 6425  𝑚 cmap 7619  cn 10774  ∞Metcxmt 19454  MetOpencmopn 19459  𝑡clm 20741  Caucca 22724  IndMetcims 26587  chil 26949   + cva 26950   · csm 26951  normcno 26953  Cauchyccau 26956  𝑣 chli 26957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722  ax-cnex 9746  ax-resscn 9747  ax-1cn 9748  ax-icn 9749  ax-addcl 9750  ax-addrcl 9751  ax-mulcl 9752  ax-mulrcl 9753  ax-mulcom 9754  ax-addass 9755  ax-mulass 9756  ax-distr 9757  ax-i2m1 9758  ax-1ne0 9759  ax-1rid 9760  ax-rnegex 9761  ax-rrecex 9762  ax-cnre 9763  ax-pre-lttri 9764  ax-pre-lttrn 9765  ax-pre-ltadd 9766  ax-pre-mulgt0 9767  ax-pre-sup 9768  ax-addf 9769  ax-mulf 9770  ax-hilex 27029  ax-hfvadd 27030  ax-hvcom 27031  ax-hvass 27032  ax-hv0cl 27033  ax-hvaddid 27034  ax-hfvmul 27035  ax-hvmulid 27036  ax-hvmulass 27037  ax-hvdistr1 27038  ax-hvdistr2 27039  ax-hvmul0 27040  ax-hfi 27109  ax-his1 27112  ax-his2 27113  ax-his3 27114  ax-his4 27115
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6833  df-1st 6933  df-2nd 6934  df-wrecs 7168  df-recs 7230  df-rdg 7268  df-er 7504  df-map 7621  df-pm 7622  df-en 7717  df-dom 7718  df-sdom 7719  df-sup 8106  df-inf 8107  df-pnf 9830  df-mnf 9831  df-xr 9832  df-ltxr 9833  df-le 9834  df-sub 10018  df-neg 10019  df-div 10433  df-nn 10775  df-2 10833  df-3 10834  df-4 10835  df-n0 11047  df-z 11118  df-uz 11427  df-q 11530  df-rp 11574  df-xneg 11687  df-xadd 11688  df-xmul 11689  df-icc 11921  df-seq 12531  df-exp 12590  df-cj 13544  df-re 13545  df-im 13546  df-sqrt 13680  df-abs 13681  df-topgen 15809  df-psmet 19461  df-xmet 19462  df-met 19463  df-bl 19464  df-mopn 19465  df-top 20422  df-bases 20423  df-topon 20424  df-lm 20744  df-haus 20830  df-cau 22727  df-grpo 26470  df-gid 26471  df-ginv 26472  df-gdiv 26473  df-ablo 26525  df-vc 26540  df-nv 26588  df-va 26591  df-ba 26592  df-sm 26593  df-0v 26594  df-vs 26595  df-nmcv 26596  df-ims 26597  df-hnorm 26998  df-hvsub 27001  df-hlim 27002  df-hcau 27003
This theorem is referenced by:  isch3  27271  chscllem2  27670
  Copyright terms: Public domain W3C validator