HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimveci Structured version   Visualization version   GIF version

Theorem hlimveci 28348
Description: Closure of the limit of a sequence on Hilbert space. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlim.1 𝐴 ∈ V
Assertion
Ref Expression
hlimveci (𝐹𝑣 𝐴𝐴 ∈ ℋ)

Proof of Theorem hlimveci
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlim.1 . . . 4 𝐴 ∈ V
21hlimi 28346 . . 3 (𝐹𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
32simplbi 478 . 2 (𝐹𝑣 𝐴 → (𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ))
43simprd 482 1 (𝐹𝑣 𝐴𝐴 ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2131  wral 3042  wrex 3043  Vcvv 3332   class class class wbr 4796  wf 6037  cfv 6041  (class class class)co 6805   < clt 10258  cn 11204  cuz 11871  +crp 12017  chil 28077  normcno 28081   cmv 28083  𝑣 chli 28085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-i2m1 10188  ax-1ne0 10189  ax-rrecex 10192  ax-cnre 10193
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-om 7223  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-nn 11205  df-hlim 28130
This theorem is referenced by:  hlimf  28395  helch  28401  occllem  28463  nlelchi  29221  hmopidmchi  29311
  Copyright terms: Public domain W3C validator