MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlmul0 Structured version   Visualization version   GIF version

Theorem hlmul0 28688
Description: Hilbert space scalar multiplication by zero. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlmul0.1 𝑋 = (BaseSet‘𝑈)
hlmul0.4 𝑆 = ( ·𝑠OLD𝑈)
hlmul0.5 𝑍 = (0vec𝑈)
Assertion
Ref Expression
hlmul0 ((𝑈 ∈ CHilOLD𝐴𝑋) → (0𝑆𝐴) = 𝑍)

Proof of Theorem hlmul0
StepHypRef Expression
1 hlnv 28670 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
2 hlmul0.1 . . 3 𝑋 = (BaseSet‘𝑈)
3 hlmul0.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
4 hlmul0.5 . . 3 𝑍 = (0vec𝑈)
52, 3, 4nv0 28416 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0𝑆𝐴) = 𝑍)
61, 5sylan 582 1 ((𝑈 ∈ CHilOLD𝐴𝑋) → (0𝑆𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  0cc0 10539  NrmCVeccnv 28363  BaseSetcba 28365   ·𝑠OLD cns 28366  0veccn0v 28367  CHilOLDchlo 28664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-1st 7691  df-2nd 7692  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-ltxr 10682  df-grpo 28272  df-gid 28273  df-ginv 28274  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-nmcv 28379  df-cbn 28642  df-hlo 28665
This theorem is referenced by:  axhvmul0-zf  28771
  Copyright terms: Public domain W3C validator