MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlpasch Structured version   Visualization version   GIF version

Theorem hlpasch 26544
Description: An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020.)
Hypotheses
Ref Expression
hlpasch.p 𝑃 = (Base‘𝐺)
hlpasch.i 𝐼 = (Itv‘𝐺)
hlpasch.k 𝐾 = (hlG‘𝐺)
hlpasch.g (𝜑𝐺 ∈ TarskiG)
hlpasch.1 (𝜑𝐴𝑃)
hlpasch.2 (𝜑𝐵𝑃)
hlpasch.3 (𝜑𝐶𝑃)
hlpasch.4 (𝜑𝑋𝑃)
hlpasch.5 (𝜑𝐷𝑃)
hlpasch.6 (𝜑𝐴𝐵)
hlpasch.7 (𝜑𝐶(𝐾𝐵)𝐷)
hlpasch.8 (𝜑𝐴 ∈ (𝑋𝐼𝐶))
Assertion
Ref Expression
hlpasch (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐺   𝑒,𝐼   𝑒,𝐾   𝑃,𝑒   𝑒,𝑋   𝜑,𝑒

Proof of Theorem hlpasch
StepHypRef Expression
1 hlpasch.p . . . 4 𝑃 = (Base‘𝐺)
2 hlpasch.i . . . 4 𝐼 = (Itv‘𝐺)
3 eqid 2823 . . . 4 (LineG‘𝐺) = (LineG‘𝐺)
4 hlpasch.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐺 ∈ TarskiG)
6 hlpasch.5 . . . . 5 (𝜑𝐷𝑃)
76adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐷𝑃)
8 hlpasch.4 . . . . 5 (𝜑𝑋𝑃)
98adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝑋𝑃)
10 hlpasch.3 . . . . 5 (𝜑𝐶𝑃)
1110adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶𝑃)
12 hlpasch.2 . . . . 5 (𝜑𝐵𝑃)
1312adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵𝑃)
14 hlpasch.1 . . . . 5 (𝜑𝐴𝑃)
1514adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴𝑃)
16 eqid 2823 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
17 simpr 487 . . . . 5 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷))
181, 16, 2, 5, 13, 11, 7, 17tgbtwncom 26276 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐷𝐼𝐵))
19 hlpasch.8 . . . . 5 (𝜑𝐴 ∈ (𝑋𝐼𝐶))
2019adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴 ∈ (𝑋𝐼𝐶))
211, 2, 3, 5, 7, 9, 11, 13, 15, 18, 20outpasch 26543 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)))
22 hlpasch.k . . . . . . 7 𝐾 = (hlG‘𝐺)
23 simplr 767 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒𝑃)
2413ad2antrr 724 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐵𝑃)
2515ad2antrr 724 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴𝑃)
265ad2antrr 724 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐺 ∈ TarskiG)
27 simprr 771 . . . . . . . 8 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝐵𝐼𝑒))
281, 16, 2, 26, 24, 25, 23, 27tgbtwncom 26276 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝑒𝐼𝐵))
2926adantr 483 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG)
3024adantr 483 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵𝑃)
3125adantr 483 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴𝑃)
32 simplrr 776 . . . . . . . . . . . 12 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝑒))
33 simpr 487 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
3433oveq2d 7174 . . . . . . . . . . . 12 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → (𝐵𝐼𝑒) = (𝐵𝐼𝐵))
3532, 34eleqtrd 2917 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
361, 16, 2, 29, 30, 31, 35axtgbtwnid 26254 . . . . . . . . . 10 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐴)
3736eqcomd 2829 . . . . . . . . 9 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 = 𝐵)
38 hlpasch.6 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
3938ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴𝐵)
4039adantr 483 . . . . . . . . . 10 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴𝐵)
4140neneqd 3023 . . . . . . . . 9 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → ¬ 𝐴 = 𝐵)
4237, 41pm2.65da 815 . . . . . . . 8 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → ¬ 𝑒 = 𝐵)
4342neqned 3025 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒𝐵)
441, 2, 22, 23, 24, 25, 26, 25, 28, 43, 39btwnhl2 26401 . . . . . 6 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴(𝐾𝐵)𝑒)
457ad2antrr 724 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐷𝑃)
469ad2antrr 724 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑋𝑃)
47 simprl 769 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝐷𝐼𝑋))
481, 16, 2, 26, 45, 23, 46, 47tgbtwncom 26276 . . . . . 6 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝑋𝐼𝐷))
4944, 48jca 514 . . . . 5 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
5049ex 415 . . . 4 (((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) → ((𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
5150reximdva 3276 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → (∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
5221, 51mpd 15 . 2 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
536ad2antrr 724 . . . . . 6 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐷𝑃)
5453adantr 483 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷𝑃)
55 simpr 487 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷)
5655breq2d 5080 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝐷))
5755eleq1d 2899 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷)))
5856, 57anbi12d 632 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷))))
5914ad2antrr 724 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴𝑃)
6059adantr 483 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴𝑃)
6112ad2antrr 724 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐵𝑃)
6261adantr 483 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐵𝑃)
634ad2antrr 724 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG)
6463adantr 483 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐺 ∈ TarskiG)
65 hlpasch.7 . . . . . . . . . 10 (𝜑𝐶(𝐾𝐵)𝐷)
661, 2, 22, 10, 6, 12, 4, 65hlcomd 26392 . . . . . . . . 9 (𝜑𝐷(𝐾𝐵)𝐶)
6766ad3antrrr 728 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾𝐵)𝐶)
6810adantr 483 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐶𝑃)
6968ad2antrr 724 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶𝑃)
7019adantr 483 . . . . . . . . . . 11 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴 ∈ (𝑋𝐼𝐶))
7170ad2antrr 724 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝑋𝐼𝐶))
72 simpr 487 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋 = 𝐵)
7372oveq1d 7173 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝑋𝐼𝐶) = (𝐵𝐼𝐶))
7471, 73eleqtrd 2917 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐶))
751, 2, 22, 10, 6, 12, 4ishlg 26390 . . . . . . . . . . . 12 (𝜑 → (𝐶(𝐾𝐵)𝐷 ↔ (𝐶𝐵𝐷𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))))
7665, 75mpbid 234 . . . . . . . . . . 11 (𝜑 → (𝐶𝐵𝐷𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))))
7776simp1d 1138 . . . . . . . . . 10 (𝜑𝐶𝐵)
7877ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶𝐵)
7938ad2antrr 724 . . . . . . . . . 10 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴𝐵)
8079adantr 483 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴𝐵)
811, 2, 22, 54, 69, 62, 64, 60, 74, 78, 80hlbtwn 26399 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐷(𝐾𝐵)𝐶𝐷(𝐾𝐵)𝐴))
8267, 81mpbid 234 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾𝐵)𝐴)
831, 2, 22, 54, 60, 62, 64, 82hlcomd 26392 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴(𝐾𝐵)𝐷)
848ad2antrr 724 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋𝑃)
8584adantr 483 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋𝑃)
861, 16, 2, 64, 85, 54tgbtwntriv2 26275 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷 ∈ (𝑋𝐼𝐷))
8783, 86jca 514 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷)))
8854, 58, 87rspcedvd 3628 . . . 4 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
8984ad2antrr 724 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝑋𝑃)
90 simpr 487 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
9190breq2d 5080 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝑋))
9290eleq1d 2899 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝑋 ∈ (𝑋𝐼𝐷)))
9391, 92anbi12d 632 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷))))
9493ad4ant14 750 . . . . . 6 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷))))
95 simpr 487 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝐴(𝐾𝐵)𝑋)
961, 16, 2, 63, 84, 53tgbtwntriv1 26279 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋 ∈ (𝑋𝐼𝐷))
9796ad2antrr 724 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝑋 ∈ (𝑋𝐼𝐷))
9895, 97jca 514 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷)))
9989, 94, 98rspcedvd 3628 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
10053ad2antrr 724 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷𝑃)
101 simpr 487 . . . . . . . 8 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷)
102101breq2d 5080 . . . . . . 7 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝐷))
103101eleq1d 2899 . . . . . . 7 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷)))
104102, 103anbi12d 632 . . . . . 6 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷))))
10579ad2antrr 724 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴𝐵)
1061, 2, 22, 10, 6, 12, 4, 65hlne2 26394 . . . . . . . . 9 (𝜑𝐷𝐵)
107106ad4antr 730 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷𝐵)
10863ad2antrr 724 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐺 ∈ TarskiG)
10961ad2antrr 724 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵𝑃)
11059ad2antrr 724 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴𝑃)
11168ad2antrr 724 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐶𝑃)
112111adantr 483 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐶𝑃)
11384ad2antrr 724 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝑋𝑃)
114 simpr 487 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵 ∈ (𝑋𝐼𝐴))
11570ad2antrr 724 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴 ∈ (𝑋𝐼𝐶))
116115adantr 483 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝑋𝐼𝐶))
1171, 16, 2, 108, 113, 109, 110, 112, 114, 116tgbtwnexch3 26282 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝐵𝐼𝐶))
118 simp-4r 782 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶))
1191, 2, 108, 109, 110, 100, 112, 117, 118tgbtwnconn3 26365 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))
1201, 2, 22, 14, 6, 12, 4ishlg 26390 . . . . . . . . 9 (𝜑 → (𝐴(𝐾𝐵)𝐷 ↔ (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))))
121120ad4antr 730 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾𝐵)𝐷 ↔ (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))))
122105, 107, 119, 121mpbir3and 1338 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴(𝐾𝐵)𝐷)
1231, 16, 2, 108, 113, 100tgbtwntriv2 26275 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝑋𝐼𝐷))
124122, 123jca 514 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷)))
125100, 104, 124rspcedvd 3628 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
1268ad3antrrr 728 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋𝑃)
12712ad3antrrr 728 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐵𝑃)
12814ad3antrrr 728 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴𝑃)
1294ad3antrrr 728 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐺 ∈ TarskiG)
130 simpr 487 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋𝐵)
131130neneqd 3023 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → ¬ 𝑋 = 𝐵)
13263adantr 483 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐺 ∈ TarskiG)
133132adantr 483 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐺 ∈ TarskiG)
134126adantr 483 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋𝑃)
135128adantr 483 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴𝑃)
136115adantr 483 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝐶))
137 simpr 487 . . . . . . . . . . . . . . . 16 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐶)
138137oveq2d 7174 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → (𝑋𝐼𝑋) = (𝑋𝐼𝐶))
139136, 138eleqtrrd 2918 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝑋))
1401, 16, 2, 133, 134, 135, 139axtgbtwnid 26254 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐴)
141140olcd 870 . . . . . . . . . . . 12 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
142132adantr 483 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐺 ∈ TarskiG)
143127adantr 483 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐵𝑃)
144111adantr 483 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐶𝑃)
145126adantr 483 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝑋𝑃)
146128adantr 483 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐴𝑃)
147 simpr 487 . . . . . . . . . . . . . . . 16 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝑋𝐶)
148147necomd 3073 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐶𝑋)
149148neneqd 3023 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → ¬ 𝐶 = 𝑋)
15053adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷𝑃)
151106ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷𝐵)
152 simplr 767 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷))
1531, 2, 3, 132, 150, 127, 126, 151, 152lncom 26410 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋 ∈ (𝐷(LineG‘𝐺)𝐵))
15477necomd 3073 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵𝐶)
155154ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐵𝐶)
15666ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷(𝐾𝐵)𝐶)
1571, 2, 22, 150, 111, 127, 132, 3, 156hlln 26395 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷 ∈ (𝐶(LineG‘𝐺)𝐵))
1581, 2, 3, 132, 127, 111, 150, 155, 157lncom 26410 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐶))
159158orcd 869 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐷 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶))
1601, 2, 3, 132, 126, 150, 127, 111, 153, 159coltr 26435 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝑋 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶))
1611, 3, 2, 132, 127, 111, 126, 160colrot1 26347 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐵 ∈ (𝐶(LineG‘𝐺)𝑋) ∨ 𝐶 = 𝑋))
162161orcomd 867 . . . . . . . . . . . . . . . 16 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
163162adantr 483 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
164163ord 860 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (¬ 𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
165149, 164mpd 15 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋))
1661, 3, 2, 132, 126, 128, 111, 115btwncolg3 26345 . . . . . . . . . . . . . 14 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
167166adantr 483 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
1681, 2, 3, 142, 143, 144, 145, 146, 165, 167coltr 26435 . . . . . . . . . . . 12 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
169141, 168pm2.61dane 3106 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
1701, 3, 2, 132, 126, 128, 127, 169colrot2 26348 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴 ∈ (𝐵(LineG‘𝐺)𝑋) ∨ 𝐵 = 𝑋))
1711, 3, 2, 132, 127, 126, 128, 170colcom 26346 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵))
172171orcomd 867 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝑋 = 𝐵𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)))
173172ord 860 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (¬ 𝑋 = 𝐵𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)))
174131, 173mpd 15 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴 ∈ (𝑋(LineG‘𝐺)𝐵))
1751, 2, 22, 126, 127, 128, 129, 128, 3, 174lnhl 26403 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴(𝐾𝐵)𝑋𝐵 ∈ (𝑋𝐼𝐴)))
17699, 125, 175mpjaodan 955 . . . 4 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
17788, 176pm2.61dane 3106 . . 3 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
1784adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG)
1798adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝑋𝑃)
18012adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵𝑃)
18114adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴𝑃)
1826adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷𝑃)
183 simpr 487 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶))
1841, 16, 2, 178, 179, 180, 68, 181, 182, 70, 183axtgpasch 26255 . . . . 5 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)))
185184adantr 483 . . . 4 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)))
186 simplr 767 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒𝑃)
187181ad3antrrr 728 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴𝑃)
188180ad3antrrr 728 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵𝑃)
189178ad3antrrr 728 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐺 ∈ TarskiG)
190 simprl 769 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐴𝐼𝐵))
1911, 16, 2, 189, 187, 186, 188, 190tgbtwncom 26276 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐵𝐼𝐴))
19238necomd 3073 . . . . . . . . . 10 (𝜑𝐵𝐴)
193192ad4antr 730 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵𝐴)
194189adantr 483 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG)
1956ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑃)
1968ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑋𝑃)
197188adantr 483 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝑃)
198 simp-4r 782 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷))
199106necomd 3073 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐷)
200199ad5antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝐷)
201200neneqd 3023 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝐵 = 𝐷)
202 ioran 980 . . . . . . . . . . . . . 14 (¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷) ↔ (¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∧ ¬ 𝐵 = 𝐷))
203198, 201, 202sylanbrc 585 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷))
2041, 3, 2, 194, 197, 195, 196, 203ncolrot2 26351 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝐷 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵))
205 simpr 487 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
206186adantr 483 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒𝑃)
2071, 2, 3, 194, 195, 196, 197, 204ncolne1 26413 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑋)
208 simplrr 776 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷𝐼𝑋))
2091, 2, 3, 194, 195, 196, 206, 207, 208btwnlng1 26407 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷(LineG‘𝐺)𝑋))
210205, 209eqeltrrd 2916 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐷(LineG‘𝐺)𝑋))
2111, 2, 3, 194, 195, 196, 207tglinerflx1 26421 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐷(LineG‘𝐺)𝑋))
212106ad5antr 732 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝐵)
213212necomd 3073 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝐷)
2141, 2, 3, 194, 197, 195, 213tglinerflx1 26421 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐵(LineG‘𝐺)𝐷))
2151, 2, 3, 194, 197, 195, 213tglinerflx2 26422 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐷))
2161, 2, 3, 194, 195, 196, 197, 195, 204, 210, 211, 214, 215tglineinteq 26433 . . . . . . . . . . 11 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐷)
217216, 201pm2.65da 815 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → ¬ 𝑒 = 𝐵)
218217neqned 3025 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒𝐵)
2191, 2, 22, 188, 187, 186, 189, 187, 191, 193, 218btwnhl1 26400 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒(𝐾𝐵)𝐴)
2201, 2, 22, 186, 187, 188, 189, 219hlcomd 26392 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴(𝐾𝐵)𝑒)
221178ad3antrrr 728 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐺 ∈ TarskiG)
222182ad3antrrr 728 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐷𝑃)
223 simplr 767 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒𝑃)
224179ad3antrrr 728 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑋𝑃)
225 simpr 487 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝐷𝐼𝑋))
2261, 16, 2, 221, 222, 223, 224, 225tgbtwncom 26276 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝑋𝐼𝐷))
227226adantrl 714 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝑋𝐼𝐷))
228220, 227jca 514 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
229228ex 415 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) → ((𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
230229reximdva 3276 . . . 4 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → (∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
231185, 230mpd 15 . . 3 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
232177, 231pm2.61dan 811 . 2 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
23376simp3d 1140 . 2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
23452, 232, 233mpjaodan 955 1 (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  Itvcitv 26224  LineGclng 26225  hlGchlg 26388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-trkgc 26236  df-trkgb 26237  df-trkgcb 26238  df-trkgld 26240  df-trkg 26241  df-cgrg 26299  df-leg 26371  df-hlg 26389  df-mir 26441  df-rag 26482  df-perpg 26484
This theorem is referenced by:  inaghl  26633
  Copyright terms: Public domain W3C validator