Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat Structured version   Visualization version   GIF version

Theorem hlrelat 33505
Description: A Hilbert lattice is relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 28409 analog.) (Contributed by NM, 4-Feb-2012.)
Hypotheses
Ref Expression
hlrelat5.b 𝐵 = (Base‘𝐾)
hlrelat5.l = (le‘𝐾)
hlrelat5.s < = (lt‘𝐾)
hlrelat5.j = (join‘𝐾)
hlrelat5.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlrelat (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝   < ,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem hlrelat
StepHypRef Expression
1 hlrelat5.b . . . 4 𝐵 = (Base‘𝐾)
2 hlrelat5.l . . . 4 = (le‘𝐾)
3 hlrelat5.s . . . 4 < = (lt‘𝐾)
4 hlrelat5.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4hlrelat1 33503 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
65imp 443 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌))
7 simpll1 1092 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
8 hllat 33467 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
97, 8syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴) → 𝐾 ∈ Lat)
10 simpll2 1093 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴) → 𝑋𝐵)
111, 4atbase 33393 . . . . . 6 (𝑝𝐴𝑝𝐵)
1211adantl 480 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴) → 𝑝𝐵)
13 hlrelat5.j . . . . . 6 = (join‘𝐾)
141, 2, 3, 13latnle 16850 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (¬ 𝑝 𝑋𝑋 < (𝑋 𝑝)))
159, 10, 12, 14syl3anc 1317 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴) → (¬ 𝑝 𝑋𝑋 < (𝑋 𝑝)))
162, 3pltle 16726 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋 𝑌))
1716imp 443 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋 𝑌)
1817adantr 479 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴) → 𝑋 𝑌)
1918biantrurd 527 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴) → (𝑝 𝑌 ↔ (𝑋 𝑌𝑝 𝑌)))
20 simpll3 1094 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴) → 𝑌𝐵)
211, 2, 13latjle12 16827 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑝𝐵𝑌𝐵)) → ((𝑋 𝑌𝑝 𝑌) ↔ (𝑋 𝑝) 𝑌))
229, 10, 12, 20, 21syl13anc 1319 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴) → ((𝑋 𝑌𝑝 𝑌) ↔ (𝑋 𝑝) 𝑌))
2319, 22bitrd 266 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴) → (𝑝 𝑌 ↔ (𝑋 𝑝) 𝑌))
2415, 23anbi12d 742 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑋𝑝 𝑌) ↔ (𝑋 < (𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)))
2524rexbidva 3026 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (∃𝑝𝐴𝑝 𝑋𝑝 𝑌) ↔ ∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)))
266, 25mpbid 220 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1975  wrex 2892   class class class wbr 4573  cfv 5786  (class class class)co 6523  Basecbs 15637  lecple 15717  ltcplt 16706  joincjn 16709  Latclat 16810  Atomscatm 33367  HLchlt 33454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-preset 16693  df-poset 16711  df-plt 16723  df-lub 16739  df-glb 16740  df-join 16741  df-meet 16742  df-p0 16804  df-lat 16811  df-clat 16873  df-oposet 33280  df-ol 33282  df-oml 33283  df-covers 33370  df-ats 33371  df-atl 33402  df-cvlat 33426  df-hlat 33455
This theorem is referenced by:  hlrelat2  33506  atle  33539  2atlt  33542
  Copyright terms: Public domain W3C validator