Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat2 Structured version   Visualization version   GIF version

Theorem hlrelat2 35007
 Description: A consequence of relative atomicity. (chrelat2i 29352 analog.) (Contributed by NM, 5-Feb-2012.)
Hypotheses
Ref Expression
hlrelat2.b 𝐵 = (Base‘𝐾)
hlrelat2.l = (le‘𝐾)
hlrelat2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlrelat2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem hlrelat2
StepHypRef Expression
1 hllat 34968 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 hlrelat2.b . . . . 5 𝐵 = (Base‘𝐾)
3 hlrelat2.l . . . . 5 = (le‘𝐾)
4 eqid 2651 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
5 eqid 2651 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
62, 3, 4, 5latnlemlt 17131 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋))
71, 6syl3an1 1399 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋))
8 simp1 1081 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
92, 5latmcl 17099 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
101, 9syl3an1 1399 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
11 simp2 1082 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
12 eqid 2651 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
13 hlrelat2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
142, 3, 4, 12, 13hlrelat 35006 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑋𝐵) ∧ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋) → ∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋))
1514ex 449 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋)))
168, 10, 11, 15syl3anc 1366 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋)))
17 simpl1 1084 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
1817, 1syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ Lat)
1910adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
202, 13atbase 34894 . . . . . . . . . 10 (𝑝𝐴𝑝𝐵)
2120adantl 481 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
22 simpl2 1085 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
232, 3, 12latjle12 17109 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑝𝐵𝑋𝐵)) → (((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋) ↔ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋))
2418, 19, 21, 22, 23syl13anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋) ↔ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋))
25 simpr 476 . . . . . . . 8 (((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋) → 𝑝 𝑋)
2624, 25syl6bir 244 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋𝑝 𝑋))
2726adantld 482 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → 𝑝 𝑋))
28 simpl3 1086 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑌𝐵)
292, 3, 5latlem12 17125 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋(meet‘𝐾)𝑌)))
3018, 21, 22, 28, 29syl13anc 1368 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋(meet‘𝐾)𝑌)))
3130notbid 307 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (¬ (𝑝 𝑋𝑝 𝑌) ↔ ¬ 𝑝 (𝑋(meet‘𝐾)𝑌)))
322, 3, 4, 12latnle 17132 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑝𝐵) → (¬ 𝑝 (𝑋(meet‘𝐾)𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝)))
3318, 19, 21, 32syl3anc 1366 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (¬ 𝑝 (𝑋(meet‘𝐾)𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝)))
3431, 33bitrd 268 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (¬ (𝑝 𝑋𝑝 𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝)))
3534, 24anbi12d 747 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ (𝑝 𝑋𝑝 𝑌) ∧ ((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋)) ↔ ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋)))
36 pm3.21 463 . . . . . . . . . 10 (𝑝 𝑌 → (𝑝 𝑋 → (𝑝 𝑋𝑝 𝑌)))
37 orcom 401 . . . . . . . . . . 11 (((𝑝 𝑋𝑝 𝑌) ∨ ¬ 𝑝 𝑋) ↔ (¬ 𝑝 𝑋 ∨ (𝑝 𝑋𝑝 𝑌)))
38 pm4.55 514 . . . . . . . . . . 11 (¬ (¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋) ↔ ((𝑝 𝑋𝑝 𝑌) ∨ ¬ 𝑝 𝑋))
39 imor 427 . . . . . . . . . . 11 ((𝑝 𝑋 → (𝑝 𝑋𝑝 𝑌)) ↔ (¬ 𝑝 𝑋 ∨ (𝑝 𝑋𝑝 𝑌)))
4037, 38, 393bitr4ri 293 . . . . . . . . . 10 ((𝑝 𝑋 → (𝑝 𝑋𝑝 𝑌)) ↔ ¬ (¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋))
4136, 40sylib 208 . . . . . . . . 9 (𝑝 𝑌 → ¬ (¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋))
4241con2i 134 . . . . . . . 8 ((¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋) → ¬ 𝑝 𝑌)
4342adantrl 752 . . . . . . 7 ((¬ (𝑝 𝑋𝑝 𝑌) ∧ ((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋)) → ¬ 𝑝 𝑌)
4435, 43syl6bir 244 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → ¬ 𝑝 𝑌))
4527, 44jcad 554 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
4645reximdva 3046 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
4716, 46syld 47 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
487, 47sylbid 230 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 → ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
492, 3lattr 17103 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
5018, 21, 22, 28, 49syl13anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
5150exp4b 631 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑝𝐴 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
5251com34 91 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑝𝐴 → (𝑋 𝑌 → (𝑝 𝑋𝑝 𝑌))))
5352com23 86 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑝𝐴 → (𝑝 𝑋𝑝 𝑌))))
5453ralrimdv 2997 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
55 iman 439 . . . . . 6 ((𝑝 𝑋𝑝 𝑌) ↔ ¬ (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
5655ralbii 3009 . . . . 5 (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ ∀𝑝𝐴 ¬ (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
57 ralnex 3021 . . . . 5 (∀𝑝𝐴 ¬ (𝑝 𝑋 ∧ ¬ 𝑝 𝑌) ↔ ¬ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
5856, 57bitri 264 . . . 4 (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ ¬ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
5954, 58syl6ib 241 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ¬ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
6059con2d 129 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌) → ¬ 𝑋 𝑌))
6148, 60impbid 202 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  ltcplt 16988  joincjn 16991  meetcmee 16992  Latclat 17092  Atomscatm 34868  HLchlt 34955 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956 This theorem is referenced by:  lhpj1  35626
 Copyright terms: Public domain W3C validator