Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsupr2 Structured version   Visualization version   GIF version

Theorem hlsupr2 34180
Description: A Hilbert lattice has the superposition property. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
hlsupr2.j = (join‘𝐾)
hlsupr2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlsupr2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟))
Distinct variable groups:   𝐴,𝑟   𝐾,𝑟   𝑃,𝑟   𝑄,𝑟
Allowed substitution hint:   (𝑟)

Proof of Theorem hlsupr2
StepHypRef Expression
1 eqid 2621 . . . 4 (le‘𝐾) = (le‘𝐾)
2 hlsupr2.j . . . 4 = (join‘𝐾)
3 hlsupr2.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 3hlsupr 34179 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))
54ex 450 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄))))
6 simpl1 1062 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
7 hlcvl 34153 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
86, 7syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ CvLat)
9 simpl2 1063 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
10 simpl3 1064 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐴)
11 simpr 477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
123, 1, 2cvlsupr3 34138 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑟𝐴)) → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
138, 9, 10, 11, 12syl13anc 1325 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
1413rexbidva 3043 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ↔ ∃𝑟𝐴 (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
15 ne0i 3902 . . . . 5 (𝑃𝐴𝐴 ≠ ∅)
16153ad2ant2 1081 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐴 ≠ ∅)
17 r19.37zv 4044 . . . 4 (𝐴 ≠ ∅ → (∃𝑟𝐴 (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄))) ↔ (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
1816, 17syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑟𝐴 (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄))) ↔ (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
1914, 18bitrd 268 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
205, 19mpbird 247 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  c0 3896   class class class wbr 4618  cfv 5852  (class class class)co 6610  lecple 15876  joincjn 16872  Atomscatm 34057  CvLatclc 34059  HLchlt 34144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-preset 16856  df-poset 16874  df-plt 16886  df-lub 16902  df-glb 16903  df-join 16904  df-meet 16905  df-p0 16967  df-lat 16974  df-covers 34060  df-ats 34061  df-atl 34092  df-cvlat 34116  df-hlat 34145
This theorem is referenced by:  4atexlemex6  34867
  Copyright terms: Public domain W3C validator